Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme0c Structured version   Visualization version   GIF version

Theorem cdleme0c 36021
 Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 12-Jun-2012.)
Hypotheses
Ref Expression
cdleme0.l = (le‘𝐾)
cdleme0.j = (join‘𝐾)
cdleme0.m = (meet‘𝐾)
cdleme0.a 𝐴 = (Atoms‘𝐾)
cdleme0.h 𝐻 = (LHyp‘𝐾)
cdleme0.u 𝑈 = ((𝑃 𝑄) 𝑊)
Assertion
Ref Expression
cdleme0c (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑈𝑅)

Proof of Theorem cdleme0c
StepHypRef Expression
1 cdleme0.u . . 3 𝑈 = ((𝑃 𝑄) 𝑊)
2 simp1l 1240 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝐾 ∈ HL)
3 hllat 35171 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
42, 3syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝐾 ∈ Lat)
5 simp2l 1242 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑃𝐴)
6 eqid 2760 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
7 cdleme0.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
86, 7atbase 35097 . . . . . 6 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
95, 8syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑃 ∈ (Base‘𝐾))
10 simp2r 1243 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑄𝐴)
116, 7atbase 35097 . . . . . 6 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
1210, 11syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑄 ∈ (Base‘𝐾))
13 cdleme0.j . . . . . 6 = (join‘𝐾)
146, 13latjcl 17272 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 𝑄) ∈ (Base‘𝐾))
154, 9, 12, 14syl3anc 1477 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑃 𝑄) ∈ (Base‘𝐾))
16 simp1r 1241 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑊𝐻)
17 cdleme0.h . . . . . 6 𝐻 = (LHyp‘𝐾)
186, 17lhpbase 35805 . . . . 5 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
1916, 18syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑊 ∈ (Base‘𝐾))
20 cdleme0.l . . . . 5 = (le‘𝐾)
21 cdleme0.m . . . . 5 = (meet‘𝐾)
226, 20, 21latmle2 17298 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) 𝑊)
234, 15, 19, 22syl3anc 1477 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ((𝑃 𝑄) 𝑊) 𝑊)
241, 23syl5eqbr 4839 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑈 𝑊)
25 simp3r 1245 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ¬ 𝑅 𝑊)
26 nbrne2 4824 . 2 ((𝑈 𝑊 ∧ ¬ 𝑅 𝑊) → 𝑈𝑅)
2724, 25, 26syl2anc 696 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑈𝑅)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139   ≠ wne 2932   class class class wbr 4804  ‘cfv 6049  (class class class)co 6814  Basecbs 16079  lecple 16170  joincjn 17165  meetcmee 17166  Latclat 17266  Atomscatm 35071  HLchlt 35158  LHypclh 35791 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-lub 17195  df-glb 17196  df-join 17197  df-meet 17198  df-lat 17267  df-ats 35075  df-atl 35106  df-cvlat 35130  df-hlat 35159  df-lhyp 35795 This theorem is referenced by:  cdleme0gN  36027  cdleme11a  36068  cdleme11h  36074  cdleme36a  36268
 Copyright terms: Public domain W3C validator