![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > cdj3lem2 | Structured version Visualization version GIF version |
Description: Lemma for cdj3i 29428. Value of the first-component function 𝑆. (Contributed by NM, 23-May-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cdj3lem2.1 | ⊢ 𝐴 ∈ Sℋ |
cdj3lem2.2 | ⊢ 𝐵 ∈ Sℋ |
cdj3lem2.3 | ⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) |
Ref | Expression |
---|---|
cdj3lem2 | ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘(𝐶 +ℎ 𝐷)) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdj3lem2.1 | . . . . 5 ⊢ 𝐴 ∈ Sℋ | |
2 | cdj3lem2.2 | . . . . 5 ⊢ 𝐵 ∈ Sℋ | |
3 | 1, 2 | shsvai 28351 | . . . 4 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶 +ℎ 𝐷) ∈ (𝐴 +ℋ 𝐵)) |
4 | eqeq1 2655 | . . . . . . 7 ⊢ (𝑥 = (𝐶 +ℎ 𝐷) → (𝑥 = (𝑧 +ℎ 𝑤) ↔ (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤))) | |
5 | 4 | rexbidv 3081 | . . . . . 6 ⊢ (𝑥 = (𝐶 +ℎ 𝐷) → (∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤) ↔ ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤))) |
6 | 5 | riotabidv 6653 | . . . . 5 ⊢ (𝑥 = (𝐶 +ℎ 𝐷) → (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤)) = (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤))) |
7 | cdj3lem2.3 | . . . . 5 ⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) | |
8 | riotaex 6655 | . . . . 5 ⊢ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤)) ∈ V | |
9 | 6, 7, 8 | fvmpt 6321 | . . . 4 ⊢ ((𝐶 +ℎ 𝐷) ∈ (𝐴 +ℋ 𝐵) → (𝑆‘(𝐶 +ℎ 𝐷)) = (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤))) |
10 | 3, 9 | syl 17 | . . 3 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝑆‘(𝐶 +ℎ 𝐷)) = (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤))) |
11 | 10 | 3adant3 1101 | . 2 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘(𝐶 +ℎ 𝐷)) = (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤))) |
12 | eqid 2651 | . . . . 5 ⊢ (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝐷) | |
13 | oveq2 6698 | . . . . . . 7 ⊢ (𝑤 = 𝐷 → (𝐶 +ℎ 𝑤) = (𝐶 +ℎ 𝐷)) | |
14 | 13 | eqeq2d 2661 | . . . . . 6 ⊢ (𝑤 = 𝐷 → ((𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝑤) ↔ (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝐷))) |
15 | 14 | rspcev 3340 | . . . . 5 ⊢ ((𝐷 ∈ 𝐵 ∧ (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝐷)) → ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝑤)) |
16 | 12, 15 | mpan2 707 | . . . 4 ⊢ (𝐷 ∈ 𝐵 → ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝑤)) |
17 | 16 | 3ad2ant2 1103 | . . 3 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝑤)) |
18 | simp1 1081 | . . . 4 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → 𝐶 ∈ 𝐴) | |
19 | 1, 2 | cdjreui 29419 | . . . . 5 ⊢ (((𝐶 +ℎ 𝐷) ∈ (𝐴 +ℋ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → ∃!𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤)) |
20 | 3, 19 | stoic3 1741 | . . . 4 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → ∃!𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤)) |
21 | oveq1 6697 | . . . . . . 7 ⊢ (𝑧 = 𝐶 → (𝑧 +ℎ 𝑤) = (𝐶 +ℎ 𝑤)) | |
22 | 21 | eqeq2d 2661 | . . . . . 6 ⊢ (𝑧 = 𝐶 → ((𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤) ↔ (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝑤))) |
23 | 22 | rexbidv 3081 | . . . . 5 ⊢ (𝑧 = 𝐶 → (∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤) ↔ ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝑤))) |
24 | 23 | riota2 6673 | . . . 4 ⊢ ((𝐶 ∈ 𝐴 ∧ ∃!𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤)) → (∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝑤) ↔ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤)) = 𝐶)) |
25 | 18, 20, 24 | syl2anc 694 | . . 3 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝐶 +ℎ 𝑤) ↔ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤)) = 𝐶)) |
26 | 17, 25 | mpbid 222 | . 2 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 (𝐶 +ℎ 𝐷) = (𝑧 +ℎ 𝑤)) = 𝐶) |
27 | 11, 26 | eqtrd 2685 | 1 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘(𝐶 +ℎ 𝐷)) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ∃wrex 2942 ∃!wreu 2943 ∩ cin 3606 ↦ cmpt 4762 ‘cfv 5926 ℩crio 6650 (class class class)co 6690 +ℎ cva 27905 Sℋ csh 27913 +ℋ cph 27916 0ℋc0h 27920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-hilex 27984 ax-hfvadd 27985 ax-hvcom 27986 ax-hvass 27987 ax-hv0cl 27988 ax-hvaddid 27989 ax-hfvmul 27990 ax-hvmulid 27991 ax-hvmulass 27992 ax-hvdistr1 27993 ax-hvdistr2 27994 ax-hvmul0 27995 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-po 5064 df-so 5065 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-grpo 27475 df-ablo 27527 df-hvsub 27956 df-sh 28192 df-ch0 28238 df-shs 28295 |
This theorem is referenced by: cdj3lem2a 29423 cdj3lem2b 29424 cdj3lem3 29425 cdj3i 29428 |
Copyright terms: Public domain | W3C validator |