![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cdaxpdom | Structured version Visualization version GIF version |
Description: Cartesian product dominates disjoint union for sets with cardinality greater than 1. Similar to Proposition 10.36 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 18-May-2015.) |
Ref | Expression |
---|---|
cdaxpdom | ⊢ ((1𝑜 ≺ 𝐴 ∧ 1𝑜 ≺ 𝐵) → (𝐴 +𝑐 𝐵) ≼ (𝐴 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsdom 8130 | . . . . 5 ⊢ Rel ≺ | |
2 | 1 | brrelex2i 5316 | . . . 4 ⊢ (1𝑜 ≺ 𝐴 → 𝐴 ∈ V) |
3 | 1 | brrelex2i 5316 | . . . 4 ⊢ (1𝑜 ≺ 𝐵 → 𝐵 ∈ V) |
4 | cdaval 9204 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 +𝑐 𝐵) = ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜}))) | |
5 | 2, 3, 4 | syl2an 495 | . . 3 ⊢ ((1𝑜 ≺ 𝐴 ∧ 1𝑜 ≺ 𝐵) → (𝐴 +𝑐 𝐵) = ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜}))) |
6 | 0ex 4942 | . . . . . . 7 ⊢ ∅ ∈ V | |
7 | xpsneng 8212 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ ∅ ∈ V) → (𝐴 × {∅}) ≈ 𝐴) | |
8 | 2, 6, 7 | sylancl 697 | . . . . . 6 ⊢ (1𝑜 ≺ 𝐴 → (𝐴 × {∅}) ≈ 𝐴) |
9 | sdomen2 8272 | . . . . . 6 ⊢ ((𝐴 × {∅}) ≈ 𝐴 → (1𝑜 ≺ (𝐴 × {∅}) ↔ 1𝑜 ≺ 𝐴)) | |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ (1𝑜 ≺ 𝐴 → (1𝑜 ≺ (𝐴 × {∅}) ↔ 1𝑜 ≺ 𝐴)) |
11 | 10 | ibir 257 | . . . 4 ⊢ (1𝑜 ≺ 𝐴 → 1𝑜 ≺ (𝐴 × {∅})) |
12 | 1on 7737 | . . . . . . 7 ⊢ 1𝑜 ∈ On | |
13 | xpsneng 8212 | . . . . . . 7 ⊢ ((𝐵 ∈ V ∧ 1𝑜 ∈ On) → (𝐵 × {1𝑜}) ≈ 𝐵) | |
14 | 3, 12, 13 | sylancl 697 | . . . . . 6 ⊢ (1𝑜 ≺ 𝐵 → (𝐵 × {1𝑜}) ≈ 𝐵) |
15 | sdomen2 8272 | . . . . . 6 ⊢ ((𝐵 × {1𝑜}) ≈ 𝐵 → (1𝑜 ≺ (𝐵 × {1𝑜}) ↔ 1𝑜 ≺ 𝐵)) | |
16 | 14, 15 | syl 17 | . . . . 5 ⊢ (1𝑜 ≺ 𝐵 → (1𝑜 ≺ (𝐵 × {1𝑜}) ↔ 1𝑜 ≺ 𝐵)) |
17 | 16 | ibir 257 | . . . 4 ⊢ (1𝑜 ≺ 𝐵 → 1𝑜 ≺ (𝐵 × {1𝑜})) |
18 | unxpdom 8334 | . . . 4 ⊢ ((1𝑜 ≺ (𝐴 × {∅}) ∧ 1𝑜 ≺ (𝐵 × {1𝑜})) → ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜})) ≼ ((𝐴 × {∅}) × (𝐵 × {1𝑜}))) | |
19 | 11, 17, 18 | syl2an 495 | . . 3 ⊢ ((1𝑜 ≺ 𝐴 ∧ 1𝑜 ≺ 𝐵) → ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜})) ≼ ((𝐴 × {∅}) × (𝐵 × {1𝑜}))) |
20 | 5, 19 | eqbrtrd 4826 | . 2 ⊢ ((1𝑜 ≺ 𝐴 ∧ 1𝑜 ≺ 𝐵) → (𝐴 +𝑐 𝐵) ≼ ((𝐴 × {∅}) × (𝐵 × {1𝑜}))) |
21 | xpen 8290 | . . 3 ⊢ (((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1𝑜}) ≈ 𝐵) → ((𝐴 × {∅}) × (𝐵 × {1𝑜})) ≈ (𝐴 × 𝐵)) | |
22 | 8, 14, 21 | syl2an 495 | . 2 ⊢ ((1𝑜 ≺ 𝐴 ∧ 1𝑜 ≺ 𝐵) → ((𝐴 × {∅}) × (𝐵 × {1𝑜})) ≈ (𝐴 × 𝐵)) |
23 | domentr 8182 | . 2 ⊢ (((𝐴 +𝑐 𝐵) ≼ ((𝐴 × {∅}) × (𝐵 × {1𝑜})) ∧ ((𝐴 × {∅}) × (𝐵 × {1𝑜})) ≈ (𝐴 × 𝐵)) → (𝐴 +𝑐 𝐵) ≼ (𝐴 × 𝐵)) | |
24 | 20, 22, 23 | syl2anc 696 | 1 ⊢ ((1𝑜 ≺ 𝐴 ∧ 1𝑜 ≺ 𝐵) → (𝐴 +𝑐 𝐵) ≼ (𝐴 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 Vcvv 3340 ∪ cun 3713 ∅c0 4058 {csn 4321 class class class wbr 4804 × cxp 5264 Oncon0 5884 (class class class)co 6814 1𝑜c1o 7723 ≈ cen 8120 ≼ cdom 8121 ≺ csdm 8122 +𝑐 ccda 9201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-1o 7730 df-2o 7731 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-cda 9202 |
This theorem is referenced by: canthp1lem1 9686 |
Copyright terms: Public domain | W3C validator |