![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cdaval | Structured version Visualization version GIF version |
Description: Value of cardinal addition. Definition of cardinal sum in [Mendelson] p. 258. For cardinal arithmetic, we follow Mendelson. Rather than defining operations restricted to cardinal numbers, we use this disjoint union operation for addition, while Cartesian product and set exponentiation stand in for cardinal multiplication and exponentiation. Equinumerosity and dominance serve the roles of equality and ordering. If we wanted to, we could easily convert our theorems to actual cardinal number operations via carden 9486, carddom 9489, and cardsdom 9490. The advantage of Mendelson's approach is that we can directly use many equinumerosity theorems that we already have available. (Contributed by NM, 24-Sep-2004.) (Revised by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
cdaval | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 +𝑐 𝐵) = ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3316 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | elex 3316 | . 2 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
3 | p0ex 4958 | . . . . . 6 ⊢ {∅} ∈ V | |
4 | xpexg 7077 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ {∅} ∈ V) → (𝐴 × {∅}) ∈ V) | |
5 | 3, 4 | mpan2 709 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 × {∅}) ∈ V) |
6 | snex 5013 | . . . . . 6 ⊢ {1𝑜} ∈ V | |
7 | xpexg 7077 | . . . . . 6 ⊢ ((𝐵 ∈ V ∧ {1𝑜} ∈ V) → (𝐵 × {1𝑜}) ∈ V) | |
8 | 6, 7 | mpan2 709 | . . . . 5 ⊢ (𝐵 ∈ V → (𝐵 × {1𝑜}) ∈ V) |
9 | 5, 8 | anim12i 591 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴 × {∅}) ∈ V ∧ (𝐵 × {1𝑜}) ∈ V)) |
10 | unexb 7075 | . . . 4 ⊢ (((𝐴 × {∅}) ∈ V ∧ (𝐵 × {1𝑜}) ∈ V) ↔ ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜})) ∈ V) | |
11 | 9, 10 | sylib 208 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜})) ∈ V) |
12 | xpeq1 5232 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 × {∅}) = (𝐴 × {∅})) | |
13 | 12 | uneq1d 3874 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 × {∅}) ∪ (𝑦 × {1𝑜})) = ((𝐴 × {∅}) ∪ (𝑦 × {1𝑜}))) |
14 | xpeq1 5232 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 × {1𝑜}) = (𝐵 × {1𝑜})) | |
15 | 14 | uneq2d 3875 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 × {∅}) ∪ (𝑦 × {1𝑜})) = ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜}))) |
16 | df-cda 9103 | . . . 4 ⊢ +𝑐 = (𝑥 ∈ V, 𝑦 ∈ V ↦ ((𝑥 × {∅}) ∪ (𝑦 × {1𝑜}))) | |
17 | 13, 15, 16 | ovmpt2g 6912 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜})) ∈ V) → (𝐴 +𝑐 𝐵) = ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜}))) |
18 | 11, 17 | mpd3an3 1538 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 +𝑐 𝐵) = ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜}))) |
19 | 1, 2, 18 | syl2an 495 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 +𝑐 𝐵) = ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1596 ∈ wcel 2103 Vcvv 3304 ∪ cun 3678 ∅c0 4023 {csn 4285 × cxp 5216 (class class class)co 6765 1𝑜c1o 7673 +𝑐 ccda 9102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ral 3019 df-rex 3020 df-rab 3023 df-v 3306 df-sbc 3542 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-br 4761 df-opab 4821 df-id 5128 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-iota 5964 df-fun 6003 df-fv 6009 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-cda 9103 |
This theorem is referenced by: uncdadom 9106 cdaun 9107 cdaen 9108 cda1dif 9111 pm110.643 9112 xp2cda 9115 cdacomen 9116 cdaassen 9117 xpcdaen 9118 mapcdaen 9119 cdadom1 9121 cdaxpdom 9124 cdafi 9125 cdainf 9127 infcda1 9128 pwcdadom 9151 isfin4-3 9250 alephadd 9512 canthp1lem2 9588 xpsc 16340 |
Copyright terms: Public domain | W3C validator |