![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cdaun | Structured version Visualization version GIF version |
Description: Cardinal addition is equinumerous to union for disjoint sets. (Contributed by NM, 5-Apr-2007.) |
Ref | Expression |
---|---|
cdaun | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 +𝑐 𝐵) ≈ (𝐴 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdaval 9193 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 +𝑐 𝐵) = ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜}))) | |
2 | 1 | 3adant3 1125 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 +𝑐 𝐵) = ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜}))) |
3 | 0ex 4921 | . . . . . 6 ⊢ ∅ ∈ V | |
4 | xpsneng 8200 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ ∅ ∈ V) → (𝐴 × {∅}) ≈ 𝐴) | |
5 | 3, 4 | mpan2 663 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × {∅}) ≈ 𝐴) |
6 | 1on 7719 | . . . . . 6 ⊢ 1𝑜 ∈ On | |
7 | xpsneng 8200 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑊 ∧ 1𝑜 ∈ On) → (𝐵 × {1𝑜}) ≈ 𝐵) | |
8 | 6, 7 | mpan2 663 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → (𝐵 × {1𝑜}) ≈ 𝐵) |
9 | 5, 8 | anim12i 592 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1𝑜}) ≈ 𝐵)) |
10 | xp01disj 7729 | . . . . 5 ⊢ ((𝐴 × {∅}) ∩ (𝐵 × {1𝑜})) = ∅ | |
11 | 10 | jctl 507 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (((𝐴 × {∅}) ∩ (𝐵 × {1𝑜})) = ∅ ∧ (𝐴 ∩ 𝐵) = ∅)) |
12 | unen 8195 | . . . 4 ⊢ ((((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1𝑜}) ≈ 𝐵) ∧ (((𝐴 × {∅}) ∩ (𝐵 × {1𝑜})) = ∅ ∧ (𝐴 ∩ 𝐵) = ∅)) → ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜})) ≈ (𝐴 ∪ 𝐵)) | |
13 | 9, 11, 12 | syl2an 575 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜})) ≈ (𝐴 ∪ 𝐵)) |
14 | 13 | 3impa 1099 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜})) ≈ (𝐴 ∪ 𝐵)) |
15 | 2, 14 | eqbrtrd 4806 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 +𝑐 𝐵) ≈ (𝐴 ∪ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1070 = wceq 1630 ∈ wcel 2144 Vcvv 3349 ∪ cun 3719 ∩ cin 3720 ∅c0 4061 {csn 4314 class class class wbr 4784 × cxp 5247 Oncon0 5866 (class class class)co 6792 1𝑜c1o 7705 ≈ cen 8105 +𝑐 ccda 9190 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-ord 5869 df-on 5870 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-1o 7712 df-en 8109 df-cda 9191 |
This theorem is referenced by: cdaenun 9197 cda0en 9202 ficardun 9225 ackbij1lem9 9251 canthp1lem1 9675 |
Copyright terms: Public domain | W3C validator |