![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cdafi | Structured version Visualization version GIF version |
Description: The cardinal sum of two finite sets is finite. (Contributed by NM, 22-Oct-2004.) |
Ref | Expression |
---|---|
cdafi | ⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴 +𝑐 𝐵) ≺ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsdom 8004 | . . . 4 ⊢ Rel ≺ | |
2 | 1 | brrelexi 5192 | . . 3 ⊢ (𝐴 ≺ ω → 𝐴 ∈ V) |
3 | 1 | brrelexi 5192 | . . 3 ⊢ (𝐵 ≺ ω → 𝐵 ∈ V) |
4 | cdaval 9030 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 +𝑐 𝐵) = ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜}))) | |
5 | 2, 3, 4 | syl2an 493 | . 2 ⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴 +𝑐 𝐵) = ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜}))) |
6 | 0elon 5816 | . . . . . 6 ⊢ ∅ ∈ On | |
7 | xpsneng 8086 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ ∅ ∈ On) → (𝐴 × {∅}) ≈ 𝐴) | |
8 | 2, 6, 7 | sylancl 695 | . . . . 5 ⊢ (𝐴 ≺ ω → (𝐴 × {∅}) ≈ 𝐴) |
9 | sdomen1 8145 | . . . . 5 ⊢ ((𝐴 × {∅}) ≈ 𝐴 → ((𝐴 × {∅}) ≺ ω ↔ 𝐴 ≺ ω)) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝐴 ≺ ω → ((𝐴 × {∅}) ≺ ω ↔ 𝐴 ≺ ω)) |
11 | 10 | ibir 257 | . . 3 ⊢ (𝐴 ≺ ω → (𝐴 × {∅}) ≺ ω) |
12 | 1on 7612 | . . . . . 6 ⊢ 1𝑜 ∈ On | |
13 | xpsneng 8086 | . . . . . 6 ⊢ ((𝐵 ∈ V ∧ 1𝑜 ∈ On) → (𝐵 × {1𝑜}) ≈ 𝐵) | |
14 | 3, 12, 13 | sylancl 695 | . . . . 5 ⊢ (𝐵 ≺ ω → (𝐵 × {1𝑜}) ≈ 𝐵) |
15 | sdomen1 8145 | . . . . 5 ⊢ ((𝐵 × {1𝑜}) ≈ 𝐵 → ((𝐵 × {1𝑜}) ≺ ω ↔ 𝐵 ≺ ω)) | |
16 | 14, 15 | syl 17 | . . . 4 ⊢ (𝐵 ≺ ω → ((𝐵 × {1𝑜}) ≺ ω ↔ 𝐵 ≺ ω)) |
17 | 16 | ibir 257 | . . 3 ⊢ (𝐵 ≺ ω → (𝐵 × {1𝑜}) ≺ ω) |
18 | unfi2 8270 | . . 3 ⊢ (((𝐴 × {∅}) ≺ ω ∧ (𝐵 × {1𝑜}) ≺ ω) → ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜})) ≺ ω) | |
19 | 11, 17, 18 | syl2an 493 | . 2 ⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜})) ≺ ω) |
20 | 5, 19 | eqbrtrd 4707 | 1 ⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴 +𝑐 𝐵) ≺ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∪ cun 3605 ∅c0 3948 {csn 4210 class class class wbr 4685 × cxp 5141 Oncon0 5761 (class class class)co 6690 ωcom 7107 1𝑜c1o 7598 ≈ cen 7994 ≺ csdm 7996 +𝑐 ccda 9027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-cda 9028 |
This theorem is referenced by: canthp1lem2 9513 |
Copyright terms: Public domain | W3C validator |