Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cda1en Structured version   Visualization version   GIF version

Theorem cda1en 9181
 Description: Cardinal addition with cardinal one (which is the same as ordinal one). Used in proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
cda1en ((𝐴𝑉 ∧ ¬ 𝐴𝐴) → (𝐴 +𝑐 1𝑜) ≈ suc 𝐴)

Proof of Theorem cda1en
StepHypRef Expression
1 enrefg 8145 . . . 4 (𝐴𝑉𝐴𝐴)
21adantr 472 . . 3 ((𝐴𝑉 ∧ ¬ 𝐴𝐴) → 𝐴𝐴)
3 ensn1g 8178 . . . . 5 (𝐴𝑉 → {𝐴} ≈ 1𝑜)
43ensymd 8164 . . . 4 (𝐴𝑉 → 1𝑜 ≈ {𝐴})
54adantr 472 . . 3 ((𝐴𝑉 ∧ ¬ 𝐴𝐴) → 1𝑜 ≈ {𝐴})
6 simpr 479 . . . 4 ((𝐴𝑉 ∧ ¬ 𝐴𝐴) → ¬ 𝐴𝐴)
7 disjsn 4382 . . . 4 ((𝐴 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴𝐴)
86, 7sylibr 224 . . 3 ((𝐴𝑉 ∧ ¬ 𝐴𝐴) → (𝐴 ∩ {𝐴}) = ∅)
9 cdaenun 9180 . . 3 ((𝐴𝐴 ∧ 1𝑜 ≈ {𝐴} ∧ (𝐴 ∩ {𝐴}) = ∅) → (𝐴 +𝑐 1𝑜) ≈ (𝐴 ∪ {𝐴}))
102, 5, 8, 9syl3anc 1473 . 2 ((𝐴𝑉 ∧ ¬ 𝐴𝐴) → (𝐴 +𝑐 1𝑜) ≈ (𝐴 ∪ {𝐴}))
11 df-suc 5882 . 2 suc 𝐴 = (𝐴 ∪ {𝐴})
1210, 11syl6breqr 4838 1 ((𝐴𝑉 ∧ ¬ 𝐴𝐴) → (𝐴 +𝑐 1𝑜) ≈ suc 𝐴)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1624   ∈ wcel 2131   ∪ cun 3705   ∩ cin 3706  ∅c0 4050  {csn 4313   class class class wbr 4796  suc csuc 5878  (class class class)co 6805  1𝑜c1o 7714   ≈ cen 8110   +𝑐 ccda 9173 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-ral 3047  df-rex 3048  df-rab 3051  df-v 3334  df-sbc 3569  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-ord 5879  df-on 5880  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-1o 7721  df-er 7903  df-en 8114  df-cda 9174 This theorem is referenced by:  pm110.643ALT  9184  pwsdompw  9210
 Copyright terms: Public domain W3C validator