![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cchhllem | Structured version Visualization version GIF version |
Description: Lemma for chlbas and chlvsca . (Contributed by Thierry Arnoux, 15-Apr-2019.) |
Ref | Expression |
---|---|
cchhl.c | ⊢ 𝐶 = (((subringAlg ‘ℂfld)‘ℝ) sSet 〈(·𝑖‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · (∗‘𝑦)))〉) |
cchhllem.2 | ⊢ 𝐸 = Slot 𝑁 |
cchhllem.3 | ⊢ 𝑁 ∈ ℕ |
cchhllem.4 | ⊢ (𝑁 < 5 ∨ 8 < 𝑁) |
Ref | Expression |
---|---|
cchhllem | ⊢ (𝐸‘ℂfld) = (𝐸‘𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cchhllem.2 | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
2 | cchhllem.3 | . . . 4 ⊢ 𝑁 ∈ ℕ | |
3 | 1, 2 | ndxid 15930 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) |
4 | cchhllem.4 | . . . . 5 ⊢ (𝑁 < 5 ∨ 8 < 𝑁) | |
5 | 5lt8 11255 | . . . . . . . . 9 ⊢ 5 < 8 | |
6 | 2 | nnrei 11067 | . . . . . . . . . 10 ⊢ 𝑁 ∈ ℝ |
7 | 5re 11137 | . . . . . . . . . 10 ⊢ 5 ∈ ℝ | |
8 | 8re 11143 | . . . . . . . . . 10 ⊢ 8 ∈ ℝ | |
9 | 6, 7, 8 | lttri 10201 | . . . . . . . . 9 ⊢ ((𝑁 < 5 ∧ 5 < 8) → 𝑁 < 8) |
10 | 5, 9 | mpan2 707 | . . . . . . . 8 ⊢ (𝑁 < 5 → 𝑁 < 8) |
11 | 6, 8 | ltnei 10199 | . . . . . . . 8 ⊢ (𝑁 < 8 → 8 ≠ 𝑁) |
12 | 10, 11 | syl 17 | . . . . . . 7 ⊢ (𝑁 < 5 → 8 ≠ 𝑁) |
13 | 12 | necomd 2878 | . . . . . 6 ⊢ (𝑁 < 5 → 𝑁 ≠ 8) |
14 | 8, 6 | ltnei 10199 | . . . . . 6 ⊢ (8 < 𝑁 → 𝑁 ≠ 8) |
15 | 13, 14 | jaoi 393 | . . . . 5 ⊢ ((𝑁 < 5 ∨ 8 < 𝑁) → 𝑁 ≠ 8) |
16 | 4, 15 | ax-mp 5 | . . . 4 ⊢ 𝑁 ≠ 8 |
17 | 1, 2 | ndxarg 15929 | . . . . 5 ⊢ (𝐸‘ndx) = 𝑁 |
18 | ipndx 16069 | . . . . 5 ⊢ (·𝑖‘ndx) = 8 | |
19 | 17, 18 | neeq12i 2889 | . . . 4 ⊢ ((𝐸‘ndx) ≠ (·𝑖‘ndx) ↔ 𝑁 ≠ 8) |
20 | 16, 19 | mpbir 221 | . . 3 ⊢ (𝐸‘ndx) ≠ (·𝑖‘ndx) |
21 | 3, 20 | setsnid 15962 | . 2 ⊢ (𝐸‘((subringAlg ‘ℂfld)‘ℝ)) = (𝐸‘(((subringAlg ‘ℂfld)‘ℝ) sSet 〈(·𝑖‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · (∗‘𝑦)))〉)) |
22 | eqidd 2652 | . . . 4 ⊢ (⊤ → ((subringAlg ‘ℂfld)‘ℝ) = ((subringAlg ‘ℂfld)‘ℝ)) | |
23 | ax-resscn 10031 | . . . . . 6 ⊢ ℝ ⊆ ℂ | |
24 | cnfldbas 19798 | . . . . . 6 ⊢ ℂ = (Base‘ℂfld) | |
25 | 23, 24 | sseqtri 3670 | . . . . 5 ⊢ ℝ ⊆ (Base‘ℂfld) |
26 | 25 | a1i 11 | . . . 4 ⊢ (⊤ → ℝ ⊆ (Base‘ℂfld)) |
27 | 22, 26, 1, 2, 4 | sralem 19225 | . . 3 ⊢ (⊤ → (𝐸‘ℂfld) = (𝐸‘((subringAlg ‘ℂfld)‘ℝ))) |
28 | 27 | trud 1533 | . 2 ⊢ (𝐸‘ℂfld) = (𝐸‘((subringAlg ‘ℂfld)‘ℝ)) |
29 | cchhl.c | . . 3 ⊢ 𝐶 = (((subringAlg ‘ℂfld)‘ℝ) sSet 〈(·𝑖‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · (∗‘𝑦)))〉) | |
30 | 29 | fveq2i 6232 | . 2 ⊢ (𝐸‘𝐶) = (𝐸‘(((subringAlg ‘ℂfld)‘ℝ) sSet 〈(·𝑖‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · (∗‘𝑦)))〉)) |
31 | 21, 28, 30 | 3eqtr4i 2683 | 1 ⊢ (𝐸‘ℂfld) = (𝐸‘𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 382 = wceq 1523 ⊤wtru 1524 ∈ wcel 2030 ≠ wne 2823 ⊆ wss 3607 〈cop 4216 class class class wbr 4685 ‘cfv 5926 (class class class)co 6690 ↦ cmpt2 6692 ℂcc 9972 ℝcr 9973 · cmul 9979 < clt 10112 ℕcn 11058 5c5 11111 8c8 11114 ∗ccj 13880 ndxcnx 15901 sSet csts 15902 Slot cslot 15903 Basecbs 15904 ·𝑖cip 15993 subringAlg csra 19216 ℂfldccnfld 19794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-fz 12365 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-plusg 16001 df-mulr 16002 df-starv 16003 df-sca 16004 df-vsca 16005 df-ip 16006 df-tset 16007 df-ple 16008 df-ds 16011 df-unif 16012 df-sra 19220 df-cnfld 19795 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |