![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ccatval1 | Structured version Visualization version GIF version |
Description: Value of a symbol in the left half of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 22-Sep-2015.) (Proof shortened by AV, 30-Apr-2020.) |
Ref | Expression |
---|---|
ccatval1 | ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝐼) = (𝑆‘𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccatfval 13516 | . . 3 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))) | |
2 | 1 | 3adant3 1124 | . 2 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ (0..^(♯‘𝑆))) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))) |
3 | eleq1 2815 | . . . 4 ⊢ (𝑥 = 𝐼 → (𝑥 ∈ (0..^(♯‘𝑆)) ↔ 𝐼 ∈ (0..^(♯‘𝑆)))) | |
4 | fveq2 6340 | . . . 4 ⊢ (𝑥 = 𝐼 → (𝑆‘𝑥) = (𝑆‘𝐼)) | |
5 | oveq1 6808 | . . . . 5 ⊢ (𝑥 = 𝐼 → (𝑥 − (♯‘𝑆)) = (𝐼 − (♯‘𝑆))) | |
6 | 5 | fveq2d 6344 | . . . 4 ⊢ (𝑥 = 𝐼 → (𝑇‘(𝑥 − (♯‘𝑆))) = (𝑇‘(𝐼 − (♯‘𝑆)))) |
7 | 3, 4, 6 | ifbieq12d 4245 | . . 3 ⊢ (𝑥 = 𝐼 → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))) = if(𝐼 ∈ (0..^(♯‘𝑆)), (𝑆‘𝐼), (𝑇‘(𝐼 − (♯‘𝑆))))) |
8 | iftrue 4224 | . . . 4 ⊢ (𝐼 ∈ (0..^(♯‘𝑆)) → if(𝐼 ∈ (0..^(♯‘𝑆)), (𝑆‘𝐼), (𝑇‘(𝐼 − (♯‘𝑆)))) = (𝑆‘𝐼)) | |
9 | 8 | 3ad2ant3 1127 | . . 3 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ (0..^(♯‘𝑆))) → if(𝐼 ∈ (0..^(♯‘𝑆)), (𝑆‘𝐼), (𝑇‘(𝐼 − (♯‘𝑆)))) = (𝑆‘𝐼)) |
10 | 7, 9 | sylan9eqr 2804 | . 2 ⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ (0..^(♯‘𝑆))) ∧ 𝑥 = 𝐼) → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))) = (𝑆‘𝐼)) |
11 | simp3 1130 | . . 3 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ (0..^(♯‘𝑆))) → 𝐼 ∈ (0..^(♯‘𝑆))) | |
12 | lencl 13481 | . . . 4 ⊢ (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℕ0) | |
13 | 12 | 3ad2ant2 1126 | . . 3 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ (0..^(♯‘𝑆))) → (♯‘𝑇) ∈ ℕ0) |
14 | elfzoext 12690 | . . 3 ⊢ ((𝐼 ∈ (0..^(♯‘𝑆)) ∧ (♯‘𝑇) ∈ ℕ0) → 𝐼 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) | |
15 | 11, 13, 14 | syl2anc 696 | . 2 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ (0..^(♯‘𝑆))) → 𝐼 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) |
16 | fvexd 6352 | . 2 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ (0..^(♯‘𝑆))) → (𝑆‘𝐼) ∈ V) | |
17 | 2, 10, 15, 16 | fvmptd 6438 | 1 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝐼) = (𝑆‘𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 = wceq 1620 ∈ wcel 2127 Vcvv 3328 ifcif 4218 ↦ cmpt 4869 ‘cfv 6037 (class class class)co 6801 0cc0 10099 + caddc 10102 − cmin 10429 ℕ0cn0 11455 ..^cfzo 12630 ♯chash 13282 Word cword 13448 ++ cconcat 13450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-rep 4911 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-cnex 10155 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-mulcom 10163 ax-addass 10164 ax-mulass 10165 ax-distr 10166 ax-i2m1 10167 ax-1ne0 10168 ax-1rid 10169 ax-rnegex 10170 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 ax-pre-lttrn 10174 ax-pre-ltadd 10175 ax-pre-mulgt0 10176 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-int 4616 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-om 7219 df-1st 7321 df-2nd 7322 df-wrecs 7564 df-recs 7625 df-rdg 7663 df-1o 7717 df-oadd 7721 df-er 7899 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-card 8926 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 df-sub 10431 df-neg 10432 df-nn 11184 df-n0 11456 df-z 11541 df-uz 11851 df-fz 12491 df-fzo 12631 df-hash 13283 df-word 13456 df-concat 13458 |
This theorem is referenced by: ccatsymb 13525 ccatfv0 13526 ccatval1lsw 13527 ccatrid 13530 ccatass 13531 ccatrn 13532 ccats1val1 13571 ccat2s1p1 13574 lswccats1fst 13582 ccat2s1fvw 13585 ccatswrd 13627 swrdccat1 13628 swrdccatin1 13654 swrdccatin12lem3 13661 swrdccatin12 13662 splfv1 13677 splfv2a 13678 revccat 13686 cshwidxmod 13720 cats1fv 13775 ccat2s1fvwALT 13870 gsumccat 17550 efgsp1 18321 efgredlemd 18328 efgrelexlemb 18334 tgcgr4 25596 clwwlkccatlem 27083 clwwlkel 27146 wwlksext2clwwlk 27158 wwlksext2clwwlkOLD 27159 signstfvn 30926 signstfvp 30928 signstfvneq0 30929 ccatpfx 41888 pfxccat1 41889 pfxccatin12 41904 |
Copyright terms: Public domain | W3C validator |