![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ccats1pfxeqrex | Structured version Visualization version GIF version |
Description: There exists a symbol such that its concatenation with the prefix obtained by deleting the last symbol of a nonempty word results in the word itself. Could replace ccats1swrdeqrex 13698. (Contributed by AV, 9-May-2020.) |
Ref | Expression |
---|---|
ccats1pfxeqrex | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → ∃𝑠 ∈ 𝑉 𝑈 = (𝑊 ++ 〈“𝑠”〉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1132 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → 𝑈 ∈ Word 𝑉) | |
2 | lencl 13530 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0) | |
3 | 2 | 3ad2ant1 1128 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (♯‘𝑊) ∈ ℕ0) |
4 | nn0p1nn 11544 | . . . . . 6 ⊢ ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) + 1) ∈ ℕ) | |
5 | nngt0 11261 | . . . . . 6 ⊢ (((♯‘𝑊) + 1) ∈ ℕ → 0 < ((♯‘𝑊) + 1)) | |
6 | 3, 4, 5 | 3syl 18 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → 0 < ((♯‘𝑊) + 1)) |
7 | breq2 4808 | . . . . . 6 ⊢ ((♯‘𝑈) = ((♯‘𝑊) + 1) → (0 < (♯‘𝑈) ↔ 0 < ((♯‘𝑊) + 1))) | |
8 | 7 | 3ad2ant3 1130 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (0 < (♯‘𝑈) ↔ 0 < ((♯‘𝑊) + 1))) |
9 | 6, 8 | mpbird 247 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → 0 < (♯‘𝑈)) |
10 | hashgt0n0 13368 | . . . 4 ⊢ ((𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑈)) → 𝑈 ≠ ∅) | |
11 | 1, 9, 10 | syl2anc 696 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → 𝑈 ≠ ∅) |
12 | lswcl 13562 | . . 3 ⊢ ((𝑈 ∈ Word 𝑉 ∧ 𝑈 ≠ ∅) → (lastS‘𝑈) ∈ 𝑉) | |
13 | 1, 11, 12 | syl2anc 696 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (lastS‘𝑈) ∈ 𝑉) |
14 | ccats1pfxeq 41949 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → 𝑈 = (𝑊 ++ 〈“(lastS‘𝑈)”〉))) | |
15 | s1eq 13590 | . . . . 5 ⊢ (𝑠 = (lastS‘𝑈) → 〈“𝑠”〉 = 〈“(lastS‘𝑈)”〉) | |
16 | 15 | oveq2d 6830 | . . . 4 ⊢ (𝑠 = (lastS‘𝑈) → (𝑊 ++ 〈“𝑠”〉) = (𝑊 ++ 〈“(lastS‘𝑈)”〉)) |
17 | 16 | eqeq2d 2770 | . . 3 ⊢ (𝑠 = (lastS‘𝑈) → (𝑈 = (𝑊 ++ 〈“𝑠”〉) ↔ 𝑈 = (𝑊 ++ 〈“(lastS‘𝑈)”〉))) |
18 | 17 | rspcev 3449 | . 2 ⊢ (((lastS‘𝑈) ∈ 𝑉 ∧ 𝑈 = (𝑊 ++ 〈“(lastS‘𝑈)”〉)) → ∃𝑠 ∈ 𝑉 𝑈 = (𝑊 ++ 〈“𝑠”〉)) |
19 | 13, 14, 18 | syl6an 569 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → ∃𝑠 ∈ 𝑉 𝑈 = (𝑊 ++ 〈“𝑠”〉))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ∃wrex 3051 ∅c0 4058 class class class wbr 4804 ‘cfv 6049 (class class class)co 6814 0cc0 10148 1c1 10149 + caddc 10151 < clt 10286 ℕcn 11232 ℕ0cn0 11504 ♯chash 13331 Word cword 13497 lastSclsw 13498 ++ cconcat 13499 〈“cs1 13500 prefix cpfx 41909 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-oadd 7734 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-card 8975 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-n0 11505 df-xnn0 11576 df-z 11590 df-uz 11900 df-fz 12540 df-fzo 12680 df-hash 13332 df-word 13505 df-lsw 13506 df-concat 13507 df-s1 13508 df-substr 13509 df-pfx 41910 |
This theorem is referenced by: reuccatpfxs1lem 41961 |
Copyright terms: Public domain | W3C validator |