MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccats1alpha Structured version   Visualization version   GIF version

Theorem ccats1alpha 13599
Description: A concatenation of a word with a singleton word is a word over an alphabet 𝑆 iff the symbols of both words belong to the alphabet 𝑆. (Contributed by AV, 27-Mar-2022.)
Assertion
Ref Expression
ccats1alpha ((𝐴 ∈ Word 𝑉𝑋𝑈) → ((𝐴 ++ ⟨“𝑋”⟩) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆𝑋𝑆)))

Proof of Theorem ccats1alpha
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 wrdv 13516 . . 3 (𝐴 ∈ Word 𝑉𝐴 ∈ Word V)
2 s1cli 13585 . . . 4 ⟨“𝑋”⟩ ∈ Word V
32a1i 11 . . 3 (𝑋𝑈 → ⟨“𝑋”⟩ ∈ Word V)
4 ccatalpha 13575 . . 3 ((𝐴 ∈ Word V ∧ ⟨“𝑋”⟩ ∈ Word V) → ((𝐴 ++ ⟨“𝑋”⟩) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆)))
51, 3, 4syl2an 583 . 2 ((𝐴 ∈ Word 𝑉𝑋𝑈) → ((𝐴 ++ ⟨“𝑋”⟩) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆)))
6 simpr 471 . . . . . . . 8 ((𝑋𝑈 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) → ⟨“𝑋”⟩ ∈ Word 𝑆)
7 s1len 13586 . . . . . . . 8 (♯‘⟨“𝑋”⟩) = 1
8 wrdl1exs1 13593 . . . . . . . 8 ((⟨“𝑋”⟩ ∈ Word 𝑆 ∧ (♯‘⟨“𝑋”⟩) = 1) → ∃𝑤𝑆 ⟨“𝑋”⟩ = ⟨“𝑤”⟩)
96, 7, 8sylancl 574 . . . . . . 7 ((𝑋𝑈 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) → ∃𝑤𝑆 ⟨“𝑋”⟩ = ⟨“𝑤”⟩)
10 elex 3364 . . . . . . . . . . 11 (𝑋𝑈𝑋 ∈ V)
1110adantr 466 . . . . . . . . . 10 ((𝑋𝑈 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) → 𝑋 ∈ V)
12 elex 3364 . . . . . . . . . 10 (𝑤𝑆𝑤 ∈ V)
13 s111 13595 . . . . . . . . . 10 ((𝑋 ∈ V ∧ 𝑤 ∈ V) → (⟨“𝑋”⟩ = ⟨“𝑤”⟩ ↔ 𝑋 = 𝑤))
1411, 12, 13syl2an 583 . . . . . . . . 9 (((𝑋𝑈 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) ∧ 𝑤𝑆) → (⟨“𝑋”⟩ = ⟨“𝑤”⟩ ↔ 𝑋 = 𝑤))
15 simpr 471 . . . . . . . . . 10 (((𝑋𝑈 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) ∧ 𝑤𝑆) → 𝑤𝑆)
16 eleq1 2838 . . . . . . . . . 10 (𝑋 = 𝑤 → (𝑋𝑆𝑤𝑆))
1715, 16syl5ibrcom 237 . . . . . . . . 9 (((𝑋𝑈 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) ∧ 𝑤𝑆) → (𝑋 = 𝑤𝑋𝑆))
1814, 17sylbid 230 . . . . . . . 8 (((𝑋𝑈 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) ∧ 𝑤𝑆) → (⟨“𝑋”⟩ = ⟨“𝑤”⟩ → 𝑋𝑆))
1918rexlimdva 3179 . . . . . . 7 ((𝑋𝑈 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) → (∃𝑤𝑆 ⟨“𝑋”⟩ = ⟨“𝑤”⟩ → 𝑋𝑆))
209, 19mpd 15 . . . . . 6 ((𝑋𝑈 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) → 𝑋𝑆)
2120ex 397 . . . . 5 (𝑋𝑈 → (⟨“𝑋”⟩ ∈ Word 𝑆𝑋𝑆))
22 s1cl 13582 . . . . 5 (𝑋𝑆 → ⟨“𝑋”⟩ ∈ Word 𝑆)
2321, 22impbid1 215 . . . 4 (𝑋𝑈 → (⟨“𝑋”⟩ ∈ Word 𝑆𝑋𝑆))
2423anbi2d 614 . . 3 (𝑋𝑈 → ((𝐴 ∈ Word 𝑆 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) ↔ (𝐴 ∈ Word 𝑆𝑋𝑆)))
2524adantl 467 . 2 ((𝐴 ∈ Word 𝑉𝑋𝑈) → ((𝐴 ∈ Word 𝑆 ∧ ⟨“𝑋”⟩ ∈ Word 𝑆) ↔ (𝐴 ∈ Word 𝑆𝑋𝑆)))
265, 25bitrd 268 1 ((𝐴 ∈ Word 𝑉𝑋𝑈) → ((𝐴 ++ ⟨“𝑋”⟩) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆𝑋𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wrex 3062  Vcvv 3351  cfv 6031  (class class class)co 6793  1c1 10139  chash 13321  Word cword 13487   ++ cconcat 13489  ⟨“cs1 13490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-card 8965  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-n0 11495  df-xnn0 11566  df-z 11580  df-uz 11889  df-fz 12534  df-fzo 12674  df-hash 13322  df-word 13495  df-concat 13497  df-s1 13498
This theorem is referenced by:  clwwlknonwwlknonb  27281
  Copyright terms: Public domain W3C validator