![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ccats1alpha | Structured version Visualization version GIF version |
Description: A concatenation of a word with a singleton word is a word over an alphabet 𝑆 iff the symbols of both words belong to the alphabet 𝑆. (Contributed by AV, 27-Mar-2022.) |
Ref | Expression |
---|---|
ccats1alpha | ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑈) → ((𝐴 ++ 〈“𝑋”〉) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆 ∧ 𝑋 ∈ 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wrdv 13516 | . . 3 ⊢ (𝐴 ∈ Word 𝑉 → 𝐴 ∈ Word V) | |
2 | s1cli 13585 | . . . 4 ⊢ 〈“𝑋”〉 ∈ Word V | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝑋 ∈ 𝑈 → 〈“𝑋”〉 ∈ Word V) |
4 | ccatalpha 13575 | . . 3 ⊢ ((𝐴 ∈ Word V ∧ 〈“𝑋”〉 ∈ Word V) → ((𝐴 ++ 〈“𝑋”〉) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆 ∧ 〈“𝑋”〉 ∈ Word 𝑆))) | |
5 | 1, 3, 4 | syl2an 583 | . 2 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑈) → ((𝐴 ++ 〈“𝑋”〉) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆 ∧ 〈“𝑋”〉 ∈ Word 𝑆))) |
6 | simpr 471 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) → 〈“𝑋”〉 ∈ Word 𝑆) | |
7 | s1len 13586 | . . . . . . . 8 ⊢ (♯‘〈“𝑋”〉) = 1 | |
8 | wrdl1exs1 13593 | . . . . . . . 8 ⊢ ((〈“𝑋”〉 ∈ Word 𝑆 ∧ (♯‘〈“𝑋”〉) = 1) → ∃𝑤 ∈ 𝑆 〈“𝑋”〉 = 〈“𝑤”〉) | |
9 | 6, 7, 8 | sylancl 574 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) → ∃𝑤 ∈ 𝑆 〈“𝑋”〉 = 〈“𝑤”〉) |
10 | elex 3364 | . . . . . . . . . . 11 ⊢ (𝑋 ∈ 𝑈 → 𝑋 ∈ V) | |
11 | 10 | adantr 466 | . . . . . . . . . 10 ⊢ ((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) → 𝑋 ∈ V) |
12 | elex 3364 | . . . . . . . . . 10 ⊢ (𝑤 ∈ 𝑆 → 𝑤 ∈ V) | |
13 | s111 13595 | . . . . . . . . . 10 ⊢ ((𝑋 ∈ V ∧ 𝑤 ∈ V) → (〈“𝑋”〉 = 〈“𝑤”〉 ↔ 𝑋 = 𝑤)) | |
14 | 11, 12, 13 | syl2an 583 | . . . . . . . . 9 ⊢ (((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) ∧ 𝑤 ∈ 𝑆) → (〈“𝑋”〉 = 〈“𝑤”〉 ↔ 𝑋 = 𝑤)) |
15 | simpr 471 | . . . . . . . . . 10 ⊢ (((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) ∧ 𝑤 ∈ 𝑆) → 𝑤 ∈ 𝑆) | |
16 | eleq1 2838 | . . . . . . . . . 10 ⊢ (𝑋 = 𝑤 → (𝑋 ∈ 𝑆 ↔ 𝑤 ∈ 𝑆)) | |
17 | 15, 16 | syl5ibrcom 237 | . . . . . . . . 9 ⊢ (((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) ∧ 𝑤 ∈ 𝑆) → (𝑋 = 𝑤 → 𝑋 ∈ 𝑆)) |
18 | 14, 17 | sylbid 230 | . . . . . . . 8 ⊢ (((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) ∧ 𝑤 ∈ 𝑆) → (〈“𝑋”〉 = 〈“𝑤”〉 → 𝑋 ∈ 𝑆)) |
19 | 18 | rexlimdva 3179 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) → (∃𝑤 ∈ 𝑆 〈“𝑋”〉 = 〈“𝑤”〉 → 𝑋 ∈ 𝑆)) |
20 | 9, 19 | mpd 15 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑈 ∧ 〈“𝑋”〉 ∈ Word 𝑆) → 𝑋 ∈ 𝑆) |
21 | 20 | ex 397 | . . . . 5 ⊢ (𝑋 ∈ 𝑈 → (〈“𝑋”〉 ∈ Word 𝑆 → 𝑋 ∈ 𝑆)) |
22 | s1cl 13582 | . . . . 5 ⊢ (𝑋 ∈ 𝑆 → 〈“𝑋”〉 ∈ Word 𝑆) | |
23 | 21, 22 | impbid1 215 | . . . 4 ⊢ (𝑋 ∈ 𝑈 → (〈“𝑋”〉 ∈ Word 𝑆 ↔ 𝑋 ∈ 𝑆)) |
24 | 23 | anbi2d 614 | . . 3 ⊢ (𝑋 ∈ 𝑈 → ((𝐴 ∈ Word 𝑆 ∧ 〈“𝑋”〉 ∈ Word 𝑆) ↔ (𝐴 ∈ Word 𝑆 ∧ 𝑋 ∈ 𝑆))) |
25 | 24 | adantl 467 | . 2 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑈) → ((𝐴 ∈ Word 𝑆 ∧ 〈“𝑋”〉 ∈ Word 𝑆) ↔ (𝐴 ∈ Word 𝑆 ∧ 𝑋 ∈ 𝑆))) |
26 | 5, 25 | bitrd 268 | 1 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑈) → ((𝐴 ++ 〈“𝑋”〉) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆 ∧ 𝑋 ∈ 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∃wrex 3062 Vcvv 3351 ‘cfv 6031 (class class class)co 6793 1c1 10139 ♯chash 13321 Word cword 13487 ++ cconcat 13489 〈“cs1 13490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-card 8965 df-cda 9192 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-n0 11495 df-xnn0 11566 df-z 11580 df-uz 11889 df-fz 12534 df-fzo 12674 df-hash 13322 df-word 13495 df-concat 13497 df-s1 13498 |
This theorem is referenced by: clwwlknonwwlknonb 27281 |
Copyright terms: Public domain | W3C validator |