Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ccatmulgnn0dir Structured version   Visualization version   GIF version

Theorem ccatmulgnn0dir 30959
Description: Concatenation of words follow the rule mulgnn0dir 17779 (although applying mulgnn0dir 17779 would require 𝑆 to be a set). In this case 𝐴 is ⟨“𝐾”⟩ to the power 𝑀 in the free monoid. (Contributed by Thierry Arnoux, 5-Oct-2018.)
Hypotheses
Ref Expression
ccatmulgnn0dir.a 𝐴 = ((0..^𝑀) × {𝐾})
ccatmulgnn0dir.b 𝐵 = ((0..^𝑁) × {𝐾})
ccatmulgnn0dir.c 𝐶 = ((0..^(𝑀 + 𝑁)) × {𝐾})
ccatmulgnn0dir.k (𝜑𝐾𝑆)
ccatmulgnn0dir.m (𝜑𝑀 ∈ ℕ0)
ccatmulgnn0dir.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
ccatmulgnn0dir (𝜑 → (𝐴 ++ 𝐵) = 𝐶)

Proof of Theorem ccatmulgnn0dir
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ccatmulgnn0dir.a . . . . . . . . 9 𝐴 = ((0..^𝑀) × {𝐾})
21fveq2i 6336 . . . . . . . 8 (♯‘𝐴) = (♯‘((0..^𝑀) × {𝐾}))
3 fzofi 12981 . . . . . . . . 9 (0..^𝑀) ∈ Fin
4 snfi 8198 . . . . . . . . 9 {𝐾} ∈ Fin
5 hashxp 13423 . . . . . . . . 9 (((0..^𝑀) ∈ Fin ∧ {𝐾} ∈ Fin) → (♯‘((0..^𝑀) × {𝐾})) = ((♯‘(0..^𝑀)) · (♯‘{𝐾})))
63, 4, 5mp2an 672 . . . . . . . 8 (♯‘((0..^𝑀) × {𝐾})) = ((♯‘(0..^𝑀)) · (♯‘{𝐾}))
72, 6eqtri 2793 . . . . . . 7 (♯‘𝐴) = ((♯‘(0..^𝑀)) · (♯‘{𝐾}))
8 ccatmulgnn0dir.m . . . . . . . . 9 (𝜑𝑀 ∈ ℕ0)
9 hashfzo0 13419 . . . . . . . . 9 (𝑀 ∈ ℕ0 → (♯‘(0..^𝑀)) = 𝑀)
108, 9syl 17 . . . . . . . 8 (𝜑 → (♯‘(0..^𝑀)) = 𝑀)
11 ccatmulgnn0dir.k . . . . . . . . 9 (𝜑𝐾𝑆)
12 hashsng 13361 . . . . . . . . 9 (𝐾𝑆 → (♯‘{𝐾}) = 1)
1311, 12syl 17 . . . . . . . 8 (𝜑 → (♯‘{𝐾}) = 1)
1410, 13oveq12d 6814 . . . . . . 7 (𝜑 → ((♯‘(0..^𝑀)) · (♯‘{𝐾})) = (𝑀 · 1))
157, 14syl5eq 2817 . . . . . 6 (𝜑 → (♯‘𝐴) = (𝑀 · 1))
168nn0cnd 11560 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
1716mulid1d 10263 . . . . . 6 (𝜑 → (𝑀 · 1) = 𝑀)
1815, 17eqtrd 2805 . . . . 5 (𝜑 → (♯‘𝐴) = 𝑀)
19 ccatmulgnn0dir.b . . . . . . . . 9 𝐵 = ((0..^𝑁) × {𝐾})
2019fveq2i 6336 . . . . . . . 8 (♯‘𝐵) = (♯‘((0..^𝑁) × {𝐾}))
21 fzofi 12981 . . . . . . . . 9 (0..^𝑁) ∈ Fin
22 hashxp 13423 . . . . . . . . 9 (((0..^𝑁) ∈ Fin ∧ {𝐾} ∈ Fin) → (♯‘((0..^𝑁) × {𝐾})) = ((♯‘(0..^𝑁)) · (♯‘{𝐾})))
2321, 4, 22mp2an 672 . . . . . . . 8 (♯‘((0..^𝑁) × {𝐾})) = ((♯‘(0..^𝑁)) · (♯‘{𝐾}))
2420, 23eqtri 2793 . . . . . . 7 (♯‘𝐵) = ((♯‘(0..^𝑁)) · (♯‘{𝐾}))
25 ccatmulgnn0dir.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
26 hashfzo0 13419 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (♯‘(0..^𝑁)) = 𝑁)
2725, 26syl 17 . . . . . . . 8 (𝜑 → (♯‘(0..^𝑁)) = 𝑁)
2827, 13oveq12d 6814 . . . . . . 7 (𝜑 → ((♯‘(0..^𝑁)) · (♯‘{𝐾})) = (𝑁 · 1))
2924, 28syl5eq 2817 . . . . . 6 (𝜑 → (♯‘𝐵) = (𝑁 · 1))
3025nn0cnd 11560 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
3130mulid1d 10263 . . . . . 6 (𝜑 → (𝑁 · 1) = 𝑁)
3229, 31eqtrd 2805 . . . . 5 (𝜑 → (♯‘𝐵) = 𝑁)
3318, 32oveq12d 6814 . . . 4 (𝜑 → ((♯‘𝐴) + (♯‘𝐵)) = (𝑀 + 𝑁))
3433oveq2d 6812 . . 3 (𝜑 → (0..^((♯‘𝐴) + (♯‘𝐵))) = (0..^(𝑀 + 𝑁)))
35 simpll 750 . . . . 5 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ 𝑖 ∈ (0..^(♯‘𝐴))) → 𝜑)
36 simpr 471 . . . . . 6 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ 𝑖 ∈ (0..^(♯‘𝐴))) → 𝑖 ∈ (0..^(♯‘𝐴)))
3718oveq2d 6812 . . . . . . 7 (𝜑 → (0..^(♯‘𝐴)) = (0..^𝑀))
3835, 37syl 17 . . . . . 6 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ 𝑖 ∈ (0..^(♯‘𝐴))) → (0..^(♯‘𝐴)) = (0..^𝑀))
3936, 38eleqtrd 2852 . . . . 5 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ 𝑖 ∈ (0..^(♯‘𝐴))) → 𝑖 ∈ (0..^𝑀))
40 fconstg 6233 . . . . . . . 8 (𝐾𝑆 → ((0..^𝑀) × {𝐾}):(0..^𝑀)⟶{𝐾})
4111, 40syl 17 . . . . . . 7 (𝜑 → ((0..^𝑀) × {𝐾}):(0..^𝑀)⟶{𝐾})
421a1i 11 . . . . . . . 8 (𝜑𝐴 = ((0..^𝑀) × {𝐾}))
4342feq1d 6169 . . . . . . 7 (𝜑 → (𝐴:(0..^𝑀)⟶{𝐾} ↔ ((0..^𝑀) × {𝐾}):(0..^𝑀)⟶{𝐾}))
4441, 43mpbird 247 . . . . . 6 (𝜑𝐴:(0..^𝑀)⟶{𝐾})
45 fvconst 6577 . . . . . 6 ((𝐴:(0..^𝑀)⟶{𝐾} ∧ 𝑖 ∈ (0..^𝑀)) → (𝐴𝑖) = 𝐾)
4644, 45sylan 569 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐴𝑖) = 𝐾)
4735, 39, 46syl2anc 573 . . . 4 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ 𝑖 ∈ (0..^(♯‘𝐴))) → (𝐴𝑖) = 𝐾)
48 simpll 750 . . . . 5 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘𝐴))) → 𝜑)
49 simplr 752 . . . . . . 7 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘𝐴))) → 𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))))
50 simpr 471 . . . . . . 7 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘𝐴))) → ¬ 𝑖 ∈ (0..^(♯‘𝐴)))
5118, 8eqeltrd 2850 . . . . . . . . 9 (𝜑 → (♯‘𝐴) ∈ ℕ0)
5248, 51syl 17 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘𝐴))) → (♯‘𝐴) ∈ ℕ0)
5352nn0zd 11687 . . . . . . 7 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘𝐴))) → (♯‘𝐴) ∈ ℤ)
5432, 25eqeltrd 2850 . . . . . . . . 9 (𝜑 → (♯‘𝐵) ∈ ℕ0)
5548, 54syl 17 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘𝐴))) → (♯‘𝐵) ∈ ℕ0)
5655nn0zd 11687 . . . . . . 7 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘𝐴))) → (♯‘𝐵) ∈ ℤ)
57 fzocatel 12740 . . . . . . 7 (((𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ∧ ¬ 𝑖 ∈ (0..^(♯‘𝐴))) ∧ ((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℤ)) → (𝑖 − (♯‘𝐴)) ∈ (0..^(♯‘𝐵)))
5849, 50, 53, 56, 57syl22anc 1477 . . . . . 6 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘𝐴))) → (𝑖 − (♯‘𝐴)) ∈ (0..^(♯‘𝐵)))
5932oveq2d 6812 . . . . . . 7 (𝜑 → (0..^(♯‘𝐵)) = (0..^𝑁))
6048, 59syl 17 . . . . . 6 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘𝐴))) → (0..^(♯‘𝐵)) = (0..^𝑁))
6158, 60eleqtrd 2852 . . . . 5 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘𝐴))) → (𝑖 − (♯‘𝐴)) ∈ (0..^𝑁))
62 fconstg 6233 . . . . . . . 8 (𝐾𝑆 → ((0..^𝑁) × {𝐾}):(0..^𝑁)⟶{𝐾})
6311, 62syl 17 . . . . . . 7 (𝜑 → ((0..^𝑁) × {𝐾}):(0..^𝑁)⟶{𝐾})
6419a1i 11 . . . . . . . 8 (𝜑𝐵 = ((0..^𝑁) × {𝐾}))
6564feq1d 6169 . . . . . . 7 (𝜑 → (𝐵:(0..^𝑁)⟶{𝐾} ↔ ((0..^𝑁) × {𝐾}):(0..^𝑁)⟶{𝐾}))
6663, 65mpbird 247 . . . . . 6 (𝜑𝐵:(0..^𝑁)⟶{𝐾})
67 fvconst 6577 . . . . . 6 ((𝐵:(0..^𝑁)⟶{𝐾} ∧ (𝑖 − (♯‘𝐴)) ∈ (0..^𝑁)) → (𝐵‘(𝑖 − (♯‘𝐴))) = 𝐾)
6866, 67sylan 569 . . . . 5 ((𝜑 ∧ (𝑖 − (♯‘𝐴)) ∈ (0..^𝑁)) → (𝐵‘(𝑖 − (♯‘𝐴))) = 𝐾)
6948, 61, 68syl2anc 573 . . . 4 (((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘𝐴))) → (𝐵‘(𝑖 − (♯‘𝐴))) = 𝐾)
7047, 69ifeqda 4261 . . 3 ((𝜑𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))) → if(𝑖 ∈ (0..^(♯‘𝐴)), (𝐴𝑖), (𝐵‘(𝑖 − (♯‘𝐴)))) = 𝐾)
7134, 70mpteq12dva 4867 . 2 (𝜑 → (𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑖 ∈ (0..^(♯‘𝐴)), (𝐴𝑖), (𝐵‘(𝑖 − (♯‘𝐴))))) = (𝑖 ∈ (0..^(𝑀 + 𝑁)) ↦ 𝐾))
72 ovex 6827 . . . . 5 (0..^𝑀) ∈ V
73 snex 5037 . . . . 5 {𝐾} ∈ V
7472, 73xpex 7113 . . . 4 ((0..^𝑀) × {𝐾}) ∈ V
751, 74eqeltri 2846 . . 3 𝐴 ∈ V
76 ovex 6827 . . . . 5 (0..^𝑁) ∈ V
7776, 73xpex 7113 . . . 4 ((0..^𝑁) × {𝐾}) ∈ V
7819, 77eqeltri 2846 . . 3 𝐵 ∈ V
79 ccatfval 13555 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ++ 𝐵) = (𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑖 ∈ (0..^(♯‘𝐴)), (𝐴𝑖), (𝐵‘(𝑖 − (♯‘𝐴))))))
8075, 78, 79mp2an 672 . 2 (𝐴 ++ 𝐵) = (𝑖 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑖 ∈ (0..^(♯‘𝐴)), (𝐴𝑖), (𝐵‘(𝑖 − (♯‘𝐴)))))
81 ccatmulgnn0dir.c . . 3 𝐶 = ((0..^(𝑀 + 𝑁)) × {𝐾})
82 fconstmpt 5302 . . 3 ((0..^(𝑀 + 𝑁)) × {𝐾}) = (𝑖 ∈ (0..^(𝑀 + 𝑁)) ↦ 𝐾)
8381, 82eqtri 2793 . 2 𝐶 = (𝑖 ∈ (0..^(𝑀 + 𝑁)) ↦ 𝐾)
8471, 80, 833eqtr4g 2830 1 (𝜑 → (𝐴 ++ 𝐵) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382   = wceq 1631  wcel 2145  Vcvv 3351  ifcif 4226  {csn 4317  cmpt 4864   × cxp 5248  wf 6026  cfv 6030  (class class class)co 6796  Fincfn 8113  0cc0 10142  1c1 10143   + caddc 10145   · cmul 10147  cmin 10472  0cn0 11499  cz 11584  ..^cfzo 12673  chash 13321   ++ cconcat 13489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-card 8969  df-cda 9196  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-n0 11500  df-z 11585  df-uz 11894  df-fz 12534  df-fzo 12674  df-hash 13322  df-concat 13497
This theorem is referenced by:  ofcccat  30960
  Copyright terms: Public domain W3C validator