MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatcl Structured version   Visualization version   GIF version

Theorem ccatcl 13517
Description: The concatenation of two words is a word. (Contributed by FL, 2-Feb-2014.) (Proof shortened by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 29-Apr-2020.)
Assertion
Ref Expression
ccatcl ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) ∈ Word 𝐵)

Proof of Theorem ccatcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ccatfval 13516 . 2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
2 wrdf 13467 . . . . . . 7 (𝑆 ∈ Word 𝐵𝑆:(0..^(♯‘𝑆))⟶𝐵)
32ad2antrr 764 . . . . . 6 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → 𝑆:(0..^(♯‘𝑆))⟶𝐵)
43ffvelrnda 6510 . . . . 5 ((((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑆𝑥) ∈ 𝐵)
5 wrdf 13467 . . . . . . 7 (𝑇 ∈ Word 𝐵𝑇:(0..^(♯‘𝑇))⟶𝐵)
65ad3antlr 769 . . . . . 6 ((((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → 𝑇:(0..^(♯‘𝑇))⟶𝐵)
7 simpr 479 . . . . . . . 8 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))))
87anim1i 593 . . . . . . 7 ((((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))))
9 lencl 13481 . . . . . . . . . 10 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℕ0)
109nn0zd 11643 . . . . . . . . 9 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℤ)
11 lencl 13481 . . . . . . . . . 10 (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℕ0)
1211nn0zd 11643 . . . . . . . . 9 (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℤ)
1310, 12anim12i 591 . . . . . . . 8 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) ∈ ℤ ∧ (♯‘𝑇) ∈ ℤ))
1413ad2antrr 764 . . . . . . 7 ((((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → ((♯‘𝑆) ∈ ℤ ∧ (♯‘𝑇) ∈ ℤ))
15 fzocatel 12697 . . . . . . 7 (((𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) ∧ ((♯‘𝑆) ∈ ℤ ∧ (♯‘𝑇) ∈ ℤ)) → (𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇)))
168, 14, 15syl2anc 696 . . . . . 6 ((((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇)))
176, 16ffvelrnd 6511 . . . . 5 ((((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) ∧ ¬ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑇‘(𝑥 − (♯‘𝑆))) ∈ 𝐵)
184, 17ifclda 4252 . . . 4 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))) ∈ 𝐵)
19 eqid 2748 . . . 4 (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))
2018, 19fmptd 6536 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))):(0..^((♯‘𝑆) + (♯‘𝑇)))⟶𝐵)
21 iswrdi 13466 . . 3 ((𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))):(0..^((♯‘𝑆) + (♯‘𝑇)))⟶𝐵 → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))) ∈ Word 𝐵)
2220, 21syl 17 . 2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))) ∈ Word 𝐵)
231, 22eqeltrd 2827 1 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) ∈ Word 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  wcel 2127  ifcif 4218  cmpt 4869  wf 6033  cfv 6037  (class class class)co 6801  0cc0 10099   + caddc 10102  cmin 10429  cz 11540  ..^cfzo 12630  chash 13282  Word cword 13448   ++ cconcat 13450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-1st 7321  df-2nd 7322  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7899  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-card 8926  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-nn 11184  df-n0 11456  df-z 11541  df-uz 11851  df-fz 12491  df-fzo 12631  df-hash 13283  df-word 13456  df-concat 13458
This theorem is referenced by:  ccat0  13519  ccatsymb  13525  ccatass  13531  ccatalpha  13536  ccatws1cl  13558  ccatws1clv  13559  ccatswrd  13627  swrdccat1  13628  swrdccat2  13629  swrdccatfn  13653  swrdccatin1  13654  swrdccatin2  13658  swrdccatin12lem2c  13659  swrdccatin12  13662  splcl  13674  spllen  13676  splfv1  13677  splfv2a  13678  splval2  13679  revccat  13686  cshwcl  13715  cats1cld  13771  cats1cli  13773  cats2cat  13778  gsumccat  17550  gsumspl  17553  gsumwspan  17555  frmdplusg  17563  frmdmnd  17568  frmdsssubm  17570  frmdup1  17573  psgnuni  18090  efginvrel2  18311  efgsp1  18321  efgredleme  18327  efgredlemc  18329  efgcpbllemb  18339  efgcpbl2  18341  frgpuplem  18356  frgpup1  18359  psgnghm  20099  wwlksnext  26982  clwwlkccat  27084  clwlkclwwlk2  27097  clwwlkel  27146  wwlksext2clwwlk  27158  wwlksext2clwwlkOLD  27159  numclwlk1lem2fo  27488  sseqf  30734  ofcccat  30900  signstfvn  30926  signstfvp  30928  signstfvc  30931  signsvfn  30939  signsvtn  30941  signshf  30945  mrsubccat  31693  mrsubco  31696  ccatpfx  41888  pfxccat1  41889  pfxccatin12  41904  pfxccatpfx1  41906  pfxccatpfx2  41907
  Copyright terms: Public domain W3C validator