Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccase Structured version   Visualization version   GIF version

Theorem ccase 1022
 Description: Inference for combining cases. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Wolf Lammen, 6-Jan-2013.)
Hypotheses
Ref Expression
ccase.1 ((𝜑𝜓) → 𝜏)
ccase.2 ((𝜒𝜓) → 𝜏)
ccase.3 ((𝜑𝜃) → 𝜏)
ccase.4 ((𝜒𝜃) → 𝜏)
Assertion
Ref Expression
ccase (((𝜑𝜒) ∧ (𝜓𝜃)) → 𝜏)

Proof of Theorem ccase
StepHypRef Expression
1 ccase.1 . . 3 ((𝜑𝜓) → 𝜏)
2 ccase.2 . . 3 ((𝜒𝜓) → 𝜏)
31, 2jaoian 941 . 2 (((𝜑𝜒) ∧ 𝜓) → 𝜏)
4 ccase.3 . . 3 ((𝜑𝜃) → 𝜏)
5 ccase.4 . . 3 ((𝜒𝜃) → 𝜏)
64, 5jaoian 941 . 2 (((𝜑𝜒) ∧ 𝜃) → 𝜏)
73, 6jaodan 942 1 (((𝜑𝜒) ∧ (𝜓𝜃)) → 𝜏)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   ∨ wo 836 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837 This theorem is referenced by:  ccased  1023  ccase2  1024  ssprsseq  4492  prel12g  4531  injresinjlem  12796  prodmo  14873  nn0gcdsq  15667  symgextf1  18048  cnmsgnsubg  20138  kelac2lem  38160
 Copyright terms: Public domain W3C validator