MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvsum Structured version   Visualization version   GIF version

Theorem cbvsum 14545
Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
Hypotheses
Ref Expression
cbvsum.1 (𝑗 = 𝑘𝐵 = 𝐶)
cbvsum.2 𝑘𝐴
cbvsum.3 𝑗𝐴
cbvsum.4 𝑘𝐵
cbvsum.5 𝑗𝐶
Assertion
Ref Expression
cbvsum Σ𝑗𝐴 𝐵 = Σ𝑘𝐴 𝐶
Distinct variable group:   𝑗,𝑘
Allowed substitution hints:   𝐴(𝑗,𝑘)   𝐵(𝑗,𝑘)   𝐶(𝑗,𝑘)

Proof of Theorem cbvsum
Dummy variables 𝑓 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cbvsum.4 . . . . . . . . . . . . 13 𝑘𝐵
2 cbvsum.5 . . . . . . . . . . . . 13 𝑗𝐶
3 cbvsum.1 . . . . . . . . . . . . 13 (𝑗 = 𝑘𝐵 = 𝐶)
41, 2, 3cbvcsb 3644 . . . . . . . . . . . 12 𝑛 / 𝑗𝐵 = 𝑛 / 𝑘𝐶
54a1i 11 . . . . . . . . . . 11 (⊤ → 𝑛 / 𝑗𝐵 = 𝑛 / 𝑘𝐶)
65ifeq1d 4212 . . . . . . . . . 10 (⊤ → if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0) = if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))
76mpteq2dv 4853 . . . . . . . . 9 (⊤ → (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0)))
87seqeq3d 12924 . . . . . . . 8 (⊤ → seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0))) = seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))))
98trud 1606 . . . . . . 7 seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0))) = seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0)))
109breq1i 4767 . . . . . 6 (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0))) ⇝ 𝑥 ↔ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥)
1110anbi2i 732 . . . . 5 ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0))) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥))
1211rexbii 3143 . . . 4 (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥))
131, 2, 3cbvcsb 3644 . . . . . . . . . . . . 13 (𝑓𝑛) / 𝑗𝐵 = (𝑓𝑛) / 𝑘𝐶
1413a1i 11 . . . . . . . . . . . 12 (⊤ → (𝑓𝑛) / 𝑗𝐵 = (𝑓𝑛) / 𝑘𝐶)
1514mpteq2dv 4853 . . . . . . . . . . 11 (⊤ → (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵) = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))
1615seqeq3d 12924 . . . . . . . . . 10 (⊤ → seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵)) = seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶)))
1716trud 1606 . . . . . . . . 9 seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵)) = seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))
1817fveq1i 6305 . . . . . . . 8 (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵))‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)
1918eqeq2i 2736 . . . . . . 7 (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵))‘𝑚) ↔ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))
2019anbi2i 732 . . . . . 6 ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))
2120exbii 1887 . . . . 5 (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))
2221rexbii 3143 . . . 4 (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))
2312, 22orbi12i 544 . . 3 ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
2423iotabii 5986 . 2 (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵))‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
25 df-sum 14537 . 2 Σ𝑗𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵))‘𝑚))))
26 df-sum 14537 . 2 Σ𝑘𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
2724, 25, 263eqtr4i 2756 1 Σ𝑗𝐴 𝐵 = Σ𝑘𝐴 𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383   = wceq 1596  wtru 1597  wex 1817  wcel 2103  wnfc 2853  wrex 3015  csb 3639  wss 3680  ifcif 4194   class class class wbr 4760  cmpt 4837  cio 5962  1-1-ontowf1o 6000  cfv 6001  (class class class)co 6765  0cc0 10049  1c1 10050   + caddc 10052  cn 11133  cz 11490  cuz 11800  ...cfz 12440  seqcseq 12916  cli 14335  Σcsu 14536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ral 3019  df-rex 3020  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-nul 4024  df-if 4195  df-sn 4286  df-pr 4288  df-op 4292  df-uni 4545  df-br 4761  df-opab 4821  df-mpt 4838  df-xp 5224  df-cnv 5226  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-iota 5964  df-fv 6009  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-seq 12917  df-sum 14537
This theorem is referenced by:  cbvsumv  14546  cbvsumi  14547  fsumsplitf  14592  fsumiunle  29805  esumpfinvalf  30368  fsumclf  40221  fsummulc1f  40222  fsumf1of  40226  fsumiunss  40227  fsumreclf  40228  fsumlessf  40229  fsumsermpt  40231  dvnmul  40578  sge0revalmpt  41015  sge0fsummpt  41027  sge0iunmptlemfi  41050  sge0iunmptlemre  41052  sge0ltfirpmpt2  41063  sge0isummpt2  41069  sge0xaddlem2  41071  sge0fsummptf  41073
  Copyright terms: Public domain W3C validator