![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvrex | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
cbvral.1 | ⊢ Ⅎ𝑦𝜑 |
cbvral.2 | ⊢ Ⅎ𝑥𝜓 |
cbvral.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvrex | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2902 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2902 | . 2 ⊢ Ⅎ𝑦𝐴 | |
3 | cbvral.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
4 | cbvral.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
5 | cbvral.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 1, 2, 3, 4, 5 | cbvrexf 3305 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 Ⅎwnf 1857 ∃wrex 3051 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 |
This theorem is referenced by: cbvrmo 3309 cbvrexv 3311 cbvrexsv 3322 reu8nf 3657 cbviun 4709 isarep1 6138 elabrex 6664 onminex 7172 boxcutc 8117 indexfi 8439 wdom2d 8650 hsmexlem2 9441 fprodle 14926 iundisj 23516 mbfsup 23630 iundisjf 29709 iundisjfi 29864 voliune 30601 volfiniune 30602 bnj1542 31234 cvmcov 31552 poimirlem24 33746 poimirlem26 33748 indexa 33841 rexrabdioph 37860 rexfrabdioph 37861 elabrexg 39705 dffo3f 39863 disjrnmpt2 39874 fvelimad 39957 limsuppnfd 40437 climinf2 40442 limsuppnf 40446 limsupre2 40460 limsupre3 40468 limsupre3uz 40471 limsupreuz 40472 liminfreuz 40538 stoweidlem31 40751 stoweidlem59 40779 meaiunincf 41203 rexsb 41674 cbvrex2 41679 |
Copyright terms: Public domain | W3C validator |