Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvraldva2 Structured version   Visualization version   GIF version

Theorem cbvraldva2 3205
 Description: Rule used to change the bound variable in a restricted universal quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
cbvraldva2.1 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
cbvraldva2.2 ((𝜑𝑥 = 𝑦) → 𝐴 = 𝐵)
Assertion
Ref Expression
cbvraldva2 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑦𝐵 𝜒))
Distinct variable groups:   𝑦,𝐴   𝜓,𝑦   𝑥,𝐵   𝜒,𝑥   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem cbvraldva2
StepHypRef Expression
1 simpr 476 . . . . 5 ((𝜑𝑥 = 𝑦) → 𝑥 = 𝑦)
2 cbvraldva2.2 . . . . 5 ((𝜑𝑥 = 𝑦) → 𝐴 = 𝐵)
31, 2eleq12d 2724 . . . 4 ((𝜑𝑥 = 𝑦) → (𝑥𝐴𝑦𝐵))
4 cbvraldva2.1 . . . 4 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
53, 4imbi12d 333 . . 3 ((𝜑𝑥 = 𝑦) → ((𝑥𝐴𝜓) ↔ (𝑦𝐵𝜒)))
65cbvaldva 2317 . 2 (𝜑 → (∀𝑥(𝑥𝐴𝜓) ↔ ∀𝑦(𝑦𝐵𝜒)))
7 df-ral 2946 . 2 (∀𝑥𝐴 𝜓 ↔ ∀𝑥(𝑥𝐴𝜓))
8 df-ral 2946 . 2 (∀𝑦𝐵 𝜒 ↔ ∀𝑦(𝑦𝐵𝜒))
96, 7, 83bitr4g 303 1 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑦𝐵 𝜒))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383  ∀wal 1521   = wceq 1523   ∈ wcel 2030  ∀wral 2941 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-an 385  df-ex 1745  df-cleq 2644  df-clel 2647  df-ral 2946 This theorem is referenced by:  cbvraldva  3207  tfrlem3a  7518  mreexexlemd  16351
 Copyright terms: Public domain W3C validator