Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvral2 Structured version   Visualization version   GIF version

Theorem cbvral2 41692
 Description: Change bound variables of double restricted universal quantification, using implicit substitution, analogous to cbvral2v 3328. (Contributed by Alexander van der Vekens, 2-Jul-2017.)
Hypotheses
Ref Expression
cbvral2.1 𝑧𝜑
cbvral2.2 𝑥𝜒
cbvral2.3 𝑤𝜒
cbvral2.4 𝑦𝜓
cbvral2.5 (𝑥 = 𝑧 → (𝜑𝜒))
cbvral2.6 (𝑦 = 𝑤 → (𝜒𝜓))
Assertion
Ref Expression
cbvral2 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑧𝐴𝑤𝐵 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑧,𝐴   𝑥,𝑦,𝐵   𝑦,𝑧,𝐵   𝑤,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝜓(𝑥,𝑦,𝑧,𝑤)   𝜒(𝑥,𝑦,𝑧,𝑤)   𝐴(𝑦,𝑤)

Proof of Theorem cbvral2
StepHypRef Expression
1 nfcv 2913 . . . 4 𝑧𝐵
2 cbvral2.1 . . . 4 𝑧𝜑
31, 2nfral 3094 . . 3 𝑧𝑦𝐵 𝜑
4 nfcv 2913 . . . 4 𝑥𝐵
5 cbvral2.2 . . . 4 𝑥𝜒
64, 5nfral 3094 . . 3 𝑥𝑦𝐵 𝜒
7 cbvral2.5 . . . 4 (𝑥 = 𝑧 → (𝜑𝜒))
87ralbidv 3135 . . 3 (𝑥 = 𝑧 → (∀𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 𝜒))
93, 6, 8cbvral 3316 . 2 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑧𝐴𝑦𝐵 𝜒)
10 cbvral2.3 . . . 4 𝑤𝜒
11 cbvral2.4 . . . 4 𝑦𝜓
12 cbvral2.6 . . . 4 (𝑦 = 𝑤 → (𝜒𝜓))
1310, 11, 12cbvral 3316 . . 3 (∀𝑦𝐵 𝜒 ↔ ∀𝑤𝐵 𝜓)
1413ralbii 3129 . 2 (∀𝑧𝐴𝑦𝐵 𝜒 ↔ ∀𝑧𝐴𝑤𝐵 𝜓)
159, 14bitri 264 1 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑧𝐴𝑤𝐵 𝜓)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196  Ⅎwnf 1856  ∀wral 3061 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator