![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvrabv2 | Structured version Visualization version GIF version |
Description: A more general version of cbvrabv 3327. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
cbvrabv2.1 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
cbvrabv2.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvrabv2 | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐵 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2890 | . 2 ⊢ Ⅎ𝑦𝐴 | |
2 | nfcv 2890 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | nfv 1980 | . 2 ⊢ Ⅎ𝑦𝜑 | |
4 | nfv 1980 | . 2 ⊢ Ⅎ𝑥𝜓 | |
5 | cbvrabv2.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
6 | cbvrabv2.2 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
7 | 1, 2, 3, 4, 5, 6 | cbvrabcsf 3697 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐵 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1620 {crab 3042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-rab 3047 df-sbc 3565 df-csb 3663 |
This theorem is referenced by: smfsuplem2 41493 |
Copyright terms: Public domain | W3C validator |