MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvprodv Structured version   Visualization version   GIF version

Theorem cbvprodv 14690
Description: Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypothesis
Ref Expression
cbvprod.1 (𝑗 = 𝑘𝐵 = 𝐶)
Assertion
Ref Expression
cbvprodv 𝑗𝐴 𝐵 = ∏𝑘𝐴 𝐶
Distinct variable groups:   𝑗,𝑘,𝐴   𝐵,𝑘   𝐶,𝑗
Allowed substitution hints:   𝐵(𝑗)   𝐶(𝑘)

Proof of Theorem cbvprodv
StepHypRef Expression
1 cbvprod.1 . 2 (𝑗 = 𝑘𝐵 = 𝐶)
2 nfcv 2793 . 2 𝑘𝐴
3 nfcv 2793 . 2 𝑗𝐴
4 nfcv 2793 . 2 𝑘𝐵
5 nfcv 2793 . 2 𝑗𝐶
61, 2, 3, 4, 5cbvprod 14689 1 𝑗𝐴 𝐵 = ∏𝑘𝐴 𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1523  cprod 14679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-xp 5149  df-cnv 5151  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-iota 5889  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-seq 12842  df-prod 14680
This theorem is referenced by:  breprexp  30839  mccl  40148  dvnprodlem3  40481  etransclem6  40775  etransclem37  40806  etransclem46  40815  ovnsubadd  41107  hoidmv1le  41129  hoidmvle  41135  hspmbl  41164  ovnovollem3  41193  vonn0ioo  41222  vonn0icc  41223
  Copyright terms: Public domain W3C validator