![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvprodv | Structured version Visualization version GIF version |
Description: Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.) |
Ref | Expression |
---|---|
cbvprod.1 | ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbvprodv | ⊢ ∏𝑗 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvprod.1 | . 2 ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) | |
2 | nfcv 2793 | . 2 ⊢ Ⅎ𝑘𝐴 | |
3 | nfcv 2793 | . 2 ⊢ Ⅎ𝑗𝐴 | |
4 | nfcv 2793 | . 2 ⊢ Ⅎ𝑘𝐵 | |
5 | nfcv 2793 | . 2 ⊢ Ⅎ𝑗𝐶 | |
6 | 1, 2, 3, 4, 5 | cbvprod 14689 | 1 ⊢ ∏𝑗 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∏cprod 14679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-xp 5149 df-cnv 5151 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-iota 5889 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-seq 12842 df-prod 14680 |
This theorem is referenced by: breprexp 30839 mccl 40148 dvnprodlem3 40481 etransclem6 40775 etransclem37 40806 etransclem46 40815 ovnsubadd 41107 hoidmv1le 41129 hoidmvle 41135 hspmbl 41164 ovnovollem3 41193 vonn0ioo 41222 vonn0icc 41223 |
Copyright terms: Public domain | W3C validator |