![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvprodi | Structured version Visualization version GIF version |
Description: Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.) |
Ref | Expression |
---|---|
cbvprodi.1 | ⊢ Ⅎ𝑘𝐵 |
cbvprodi.2 | ⊢ Ⅎ𝑗𝐶 |
cbvprodi.3 | ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbvprodi | ⊢ ∏𝑗 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvprodi.3 | . 2 ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) | |
2 | nfcv 2913 | . 2 ⊢ Ⅎ𝑘𝐴 | |
3 | nfcv 2913 | . 2 ⊢ Ⅎ𝑗𝐴 | |
4 | cbvprodi.1 | . 2 ⊢ Ⅎ𝑘𝐵 | |
5 | cbvprodi.2 | . 2 ⊢ Ⅎ𝑗𝐶 | |
6 | 1, 2, 3, 4, 5 | cbvprod 14852 | 1 ⊢ ∏𝑗 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 Ⅎwnfc 2900 ∏cprod 14842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-opab 4848 df-mpt 4865 df-xp 5256 df-cnv 5258 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-iota 5993 df-fv 6038 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-seq 13009 df-prod 14843 |
This theorem is referenced by: prodfc 14882 prodsn 14899 prodsnf 14901 fprodm1s 14907 fprodp1s 14908 prodsns 14909 fprod2dlem 14917 fprodcom2 14921 fprodsplitf 14925 |
Copyright terms: Public domain | W3C validator |