Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvprodi Structured version   Visualization version   GIF version

Theorem cbvprodi 14854
 Description: Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypotheses
Ref Expression
cbvprodi.1 𝑘𝐵
cbvprodi.2 𝑗𝐶
cbvprodi.3 (𝑗 = 𝑘𝐵 = 𝐶)
Assertion
Ref Expression
cbvprodi 𝑗𝐴 𝐵 = ∏𝑘𝐴 𝐶
Distinct variable group:   𝑗,𝑘,𝐴
Allowed substitution hints:   𝐵(𝑗,𝑘)   𝐶(𝑗,𝑘)

Proof of Theorem cbvprodi
StepHypRef Expression
1 cbvprodi.3 . 2 (𝑗 = 𝑘𝐵 = 𝐶)
2 nfcv 2913 . 2 𝑘𝐴
3 nfcv 2913 . 2 𝑗𝐴
4 cbvprodi.1 . 2 𝑘𝐵
5 cbvprodi.2 . 2 𝑗𝐶
61, 2, 3, 4, 5cbvprod 14852 1 𝑗𝐴 𝐵 = ∏𝑘𝐴 𝐶
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1631  Ⅎwnfc 2900  ∏cprod 14842 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-mpt 4865  df-xp 5256  df-cnv 5258  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-iota 5993  df-fv 6038  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-seq 13009  df-prod 14843 This theorem is referenced by:  prodfc  14882  prodsn  14899  prodsnf  14901  fprodm1s  14907  fprodp1s  14908  prodsns  14909  fprod2dlem  14917  fprodcom2  14921  fprodsplitf  14925
 Copyright terms: Public domain W3C validator