MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvprod Structured version   Visualization version   GIF version

Theorem cbvprod 14852
Description: Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypotheses
Ref Expression
cbvprod.1 (𝑗 = 𝑘𝐵 = 𝐶)
cbvprod.2 𝑘𝐴
cbvprod.3 𝑗𝐴
cbvprod.4 𝑘𝐵
cbvprod.5 𝑗𝐶
Assertion
Ref Expression
cbvprod 𝑗𝐴 𝐵 = ∏𝑘𝐴 𝐶
Distinct variable group:   𝑗,𝑘
Allowed substitution hints:   𝐴(𝑗,𝑘)   𝐵(𝑗,𝑘)   𝐶(𝑗,𝑘)

Proof of Theorem cbvprod
Dummy variables 𝑓 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 biid 251 . . . . . 6 (𝐴 ⊆ (ℤ𝑚) ↔ 𝐴 ⊆ (ℤ𝑚))
2 cbvprod.2 . . . . . . . . . . . . . 14 𝑘𝐴
32nfcri 2907 . . . . . . . . . . . . 13 𝑘 𝑗𝐴
4 cbvprod.4 . . . . . . . . . . . . 13 𝑘𝐵
5 nfcv 2913 . . . . . . . . . . . . 13 𝑘1
63, 4, 5nfif 4254 . . . . . . . . . . . 12 𝑘if(𝑗𝐴, 𝐵, 1)
7 cbvprod.3 . . . . . . . . . . . . . 14 𝑗𝐴
87nfcri 2907 . . . . . . . . . . . . 13 𝑗 𝑘𝐴
9 cbvprod.5 . . . . . . . . . . . . 13 𝑗𝐶
10 nfcv 2913 . . . . . . . . . . . . 13 𝑗1
118, 9, 10nfif 4254 . . . . . . . . . . . 12 𝑗if(𝑘𝐴, 𝐶, 1)
12 eleq1w 2833 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
13 cbvprod.1 . . . . . . . . . . . . 13 (𝑗 = 𝑘𝐵 = 𝐶)
1412, 13ifbieq1d 4248 . . . . . . . . . . . 12 (𝑗 = 𝑘 → if(𝑗𝐴, 𝐵, 1) = if(𝑘𝐴, 𝐶, 1))
156, 11, 14cbvmpt 4883 . . . . . . . . . . 11 (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐵, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))
16 seqeq3 13013 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐵, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1)) → seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐵, 1))) = seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))))
1715, 16ax-mp 5 . . . . . . . . . 10 seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐵, 1))) = seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1)))
1817breq1i 4793 . . . . . . . . 9 (seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐵, 1))) ⇝ 𝑦 ↔ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦)
1918anbi2i 609 . . . . . . . 8 ((𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ (𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦))
2019exbii 1924 . . . . . . 7 (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦))
2120rexbii 3189 . . . . . 6 (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦))
22 seqeq3 13013 . . . . . . . 8 ((𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐵, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1)) → seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐵, 1))) = seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))))
2315, 22ax-mp 5 . . . . . . 7 seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐵, 1))) = seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1)))
2423breq1i 4793 . . . . . 6 (seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐵, 1))) ⇝ 𝑥 ↔ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥)
251, 21, 243anbi123i 1158 . . . . 5 ((𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐵, 1))) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥))
2625rexbii 3189 . . . 4 (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐵, 1))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥))
274, 9, 13cbvcsb 3687 . . . . . . . . . . 11 (𝑓𝑛) / 𝑗𝐵 = (𝑓𝑛) / 𝑘𝐶
2827mpteq2i 4875 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵) = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶)
29 seqeq3 13013 . . . . . . . . . 10 ((𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵) = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶) → seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵)) = seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶)))
3028, 29ax-mp 5 . . . . . . . . 9 seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵)) = seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))
3130fveq1i 6333 . . . . . . . 8 (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵))‘𝑚) = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)
3231eqeq2i 2783 . . . . . . 7 (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵))‘𝑚) ↔ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))
3332anbi2i 609 . . . . . 6 ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))
3433exbii 1924 . . . . 5 (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))
3534rexbii 3189 . . . 4 (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))
3626, 35orbi12i 900 . . 3 ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
3736iotabii 6016 . 2 (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵))‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
38 df-prod 14843 . 2 𝑗𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑗𝐵))‘𝑚))))
39 df-prod 14843 . 2 𝑘𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
4037, 38, 393eqtr4i 2803 1 𝑗𝐴 𝐵 = ∏𝑘𝐴 𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  wo 836  w3a 1071   = wceq 1631  wex 1852  wcel 2145  wnfc 2900  wne 2943  wrex 3062  csb 3682  wss 3723  ifcif 4225   class class class wbr 4786  cmpt 4863  cio 5992  1-1-ontowf1o 6030  cfv 6031  (class class class)co 6793  0cc0 10138  1c1 10139   · cmul 10143  cn 11222  cz 11579  cuz 11888  ...cfz 12533  seqcseq 13008  cli 14423  cprod 14842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-xp 5255  df-cnv 5257  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-iota 5994  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-seq 13009  df-prod 14843
This theorem is referenced by:  cbvprodv  14853  cbvprodi  14854  fprodcllemf  14895  fproddivf  14924  fprodsplitf  14925  vonn0ioo2  41424  vonn0icc2  41426
  Copyright terms: Public domain W3C validator