MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvoprab2 Structured version   Visualization version   GIF version

Theorem cbvoprab2 6725
Description: Change the second bound variable in an operation abstraction. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 11-Dec-2016.)
Hypotheses
Ref Expression
cbvoprab2.1 𝑤𝜑
cbvoprab2.2 𝑦𝜓
cbvoprab2.3 (𝑦 = 𝑤 → (𝜑𝜓))
Assertion
Ref Expression
cbvoprab2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∣ 𝜓}
Distinct variable group:   𝑥,𝑤,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝜓(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cbvoprab2
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 nfv 1842 . . . . . . 7 𝑤 𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧
2 cbvoprab2.1 . . . . . . 7 𝑤𝜑
31, 2nfan 1827 . . . . . 6 𝑤(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
43nfex 2153 . . . . 5 𝑤𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
5 nfv 1842 . . . . . . 7 𝑦 𝑣 = ⟨⟨𝑥, 𝑤⟩, 𝑧
6 cbvoprab2.2 . . . . . . 7 𝑦𝜓
75, 6nfan 1827 . . . . . 6 𝑦(𝑣 = ⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∧ 𝜓)
87nfex 2153 . . . . 5 𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∧ 𝜓)
9 opeq2 4401 . . . . . . . . 9 (𝑦 = 𝑤 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑤⟩)
109opeq1d 4406 . . . . . . . 8 (𝑦 = 𝑤 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ = ⟨⟨𝑥, 𝑤⟩, 𝑧⟩)
1110eqeq2d 2631 . . . . . . 7 (𝑦 = 𝑤 → (𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ 𝑣 = ⟨⟨𝑥, 𝑤⟩, 𝑧⟩))
12 cbvoprab2.3 . . . . . . 7 (𝑦 = 𝑤 → (𝜑𝜓))
1311, 12anbi12d 747 . . . . . 6 (𝑦 = 𝑤 → ((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ (𝑣 = ⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∧ 𝜓)))
1413exbidv 1849 . . . . 5 (𝑦 = 𝑤 → (∃𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑧(𝑣 = ⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∧ 𝜓)))
154, 8, 14cbvex 2271 . . . 4 (∃𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑤𝑧(𝑣 = ⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∧ 𝜓))
1615exbii 1773 . . 3 (∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑥𝑤𝑧(𝑣 = ⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∧ 𝜓))
1716abbii 2738 . 2 {𝑣 ∣ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)} = {𝑣 ∣ ∃𝑥𝑤𝑧(𝑣 = ⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∧ 𝜓)}
18 df-oprab 6651 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑣 ∣ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
19 df-oprab 6651 . 2 {⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∣ 𝜓} = {𝑣 ∣ ∃𝑥𝑤𝑧(𝑣 = ⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∧ 𝜓)}
2017, 18, 193eqtr4i 2653 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∣ 𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1482  wex 1703  wnf 1707  {cab 2607  cop 4181  {coprab 6648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-rab 2920  df-v 3200  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-sn 4176  df-pr 4178  df-op 4182  df-oprab 6651
This theorem is referenced by:  cbvmpt22  39103
  Copyright terms: Public domain W3C validator