Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvopab1v Structured version   Visualization version   GIF version

Theorem cbvopab1v 4759
 Description: Rule used to change the first bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Eric Schmidt, 4-Apr-2007.)
Hypothesis
Ref Expression
cbvopab1v.1 (𝑥 = 𝑧 → (𝜑𝜓))
Assertion
Ref Expression
cbvopab1v {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ 𝜓}
Distinct variable groups:   𝑥,𝑦   𝑦,𝑧   𝜑,𝑧   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦,𝑧)

Proof of Theorem cbvopab1v
StepHypRef Expression
1 nfv 1883 . 2 𝑧𝜑
2 nfv 1883 . 2 𝑥𝜓
3 cbvopab1v.1 . 2 (𝑥 = 𝑧 → (𝜑𝜓))
41, 2, 3cbvopab1 4756 1 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ 𝜓}
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   = wceq 1523  {copab 4745 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-opab 4746 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator