MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvopab1s Structured version   Visualization version   GIF version

Theorem cbvopab1s 4878
Description: Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 31-Jul-2003.)
Assertion
Ref Expression
cbvopab1s {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ [𝑧 / 𝑥]𝜑}
Distinct variable groups:   𝑥,𝑦,𝑧   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem cbvopab1s
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 nfv 1993 . . . 4 𝑧𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
2 nfv 1993 . . . . . 6 𝑥 𝑤 = ⟨𝑧, 𝑦
3 nfs1v 2575 . . . . . 6 𝑥[𝑧 / 𝑥]𝜑
42, 3nfan 1978 . . . . 5 𝑥(𝑤 = ⟨𝑧, 𝑦⟩ ∧ [𝑧 / 𝑥]𝜑)
54nfex 2302 . . . 4 𝑥𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ [𝑧 / 𝑥]𝜑)
6 opeq1 4554 . . . . . . 7 (𝑥 = 𝑧 → ⟨𝑥, 𝑦⟩ = ⟨𝑧, 𝑦⟩)
76eqeq2d 2771 . . . . . 6 (𝑥 = 𝑧 → (𝑤 = ⟨𝑥, 𝑦⟩ ↔ 𝑤 = ⟨𝑧, 𝑦⟩))
8 sbequ12 2259 . . . . . 6 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
97, 8anbi12d 749 . . . . 5 (𝑥 = 𝑧 → ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑤 = ⟨𝑧, 𝑦⟩ ∧ [𝑧 / 𝑥]𝜑)))
109exbidv 2000 . . . 4 (𝑥 = 𝑧 → (∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ [𝑧 / 𝑥]𝜑)))
111, 5, 10cbvex 2418 . . 3 (∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑧𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ [𝑧 / 𝑥]𝜑))
1211abbii 2878 . 2 {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {𝑤 ∣ ∃𝑧𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ [𝑧 / 𝑥]𝜑)}
13 df-opab 4866 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
14 df-opab 4866 . 2 {⟨𝑧, 𝑦⟩ ∣ [𝑧 / 𝑥]𝜑} = {𝑤 ∣ ∃𝑧𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ [𝑧 / 𝑥]𝜑)}
1512, 13, 143eqtr4i 2793 1 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ [𝑧 / 𝑥]𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1632  wex 1853  [wsb 2047  {cab 2747  cop 4328  {copab 4865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-rab 3060  df-v 3343  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-sn 4323  df-pr 4325  df-op 4329  df-opab 4866
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator