Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvmpt2x Structured version   Visualization version   GIF version

Theorem cbvmpt2x 6899
 Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version of cbvmpt2 6900 allows 𝐵 to be a function of 𝑥. (Contributed by NM, 29-Dec-2014.)
Hypotheses
Ref Expression
cbvmpt2x.1 𝑧𝐵
cbvmpt2x.2 𝑥𝐷
cbvmpt2x.3 𝑧𝐶
cbvmpt2x.4 𝑤𝐶
cbvmpt2x.5 𝑥𝐸
cbvmpt2x.6 𝑦𝐸
cbvmpt2x.7 (𝑥 = 𝑧𝐵 = 𝐷)
cbvmpt2x.8 ((𝑥 = 𝑧𝑦 = 𝑤) → 𝐶 = 𝐸)
Assertion
Ref Expression
cbvmpt2x (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝐷𝐸)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐵   𝑦,𝐷
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧)   𝐶(𝑥,𝑦,𝑧,𝑤)   𝐷(𝑥,𝑧,𝑤)   𝐸(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cbvmpt2x
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 nfv 1992 . . . . 5 𝑧 𝑥𝐴
2 cbvmpt2x.1 . . . . . 6 𝑧𝐵
32nfcri 2896 . . . . 5 𝑧 𝑦𝐵
41, 3nfan 1977 . . . 4 𝑧(𝑥𝐴𝑦𝐵)
5 cbvmpt2x.3 . . . . 5 𝑧𝐶
65nfeq2 2918 . . . 4 𝑧 𝑢 = 𝐶
74, 6nfan 1977 . . 3 𝑧((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶)
8 nfv 1992 . . . . 5 𝑤 𝑥𝐴
9 nfcv 2902 . . . . . 6 𝑤𝐵
109nfcri 2896 . . . . 5 𝑤 𝑦𝐵
118, 10nfan 1977 . . . 4 𝑤(𝑥𝐴𝑦𝐵)
12 cbvmpt2x.4 . . . . 5 𝑤𝐶
1312nfeq2 2918 . . . 4 𝑤 𝑢 = 𝐶
1411, 13nfan 1977 . . 3 𝑤((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶)
15 nfv 1992 . . . . 5 𝑥 𝑧𝐴
16 cbvmpt2x.2 . . . . . 6 𝑥𝐷
1716nfcri 2896 . . . . 5 𝑥 𝑤𝐷
1815, 17nfan 1977 . . . 4 𝑥(𝑧𝐴𝑤𝐷)
19 cbvmpt2x.5 . . . . 5 𝑥𝐸
2019nfeq2 2918 . . . 4 𝑥 𝑢 = 𝐸
2118, 20nfan 1977 . . 3 𝑥((𝑧𝐴𝑤𝐷) ∧ 𝑢 = 𝐸)
22 nfv 1992 . . . 4 𝑦(𝑧𝐴𝑤𝐷)
23 cbvmpt2x.6 . . . . 5 𝑦𝐸
2423nfeq2 2918 . . . 4 𝑦 𝑢 = 𝐸
2522, 24nfan 1977 . . 3 𝑦((𝑧𝐴𝑤𝐷) ∧ 𝑢 = 𝐸)
26 eleq1w 2822 . . . . . 6 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
2726adantr 472 . . . . 5 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑥𝐴𝑧𝐴))
28 cbvmpt2x.7 . . . . . . 7 (𝑥 = 𝑧𝐵 = 𝐷)
2928eleq2d 2825 . . . . . 6 (𝑥 = 𝑧 → (𝑦𝐵𝑦𝐷))
30 eleq1w 2822 . . . . . 6 (𝑦 = 𝑤 → (𝑦𝐷𝑤𝐷))
3129, 30sylan9bb 738 . . . . 5 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑦𝐵𝑤𝐷))
3227, 31anbi12d 749 . . . 4 ((𝑥 = 𝑧𝑦 = 𝑤) → ((𝑥𝐴𝑦𝐵) ↔ (𝑧𝐴𝑤𝐷)))
33 cbvmpt2x.8 . . . . 5 ((𝑥 = 𝑧𝑦 = 𝑤) → 𝐶 = 𝐸)
3433eqeq2d 2770 . . . 4 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑢 = 𝐶𝑢 = 𝐸))
3532, 34anbi12d 749 . . 3 ((𝑥 = 𝑧𝑦 = 𝑤) → (((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶) ↔ ((𝑧𝐴𝑤𝐷) ∧ 𝑢 = 𝐸)))
367, 14, 21, 25, 35cbvoprab12 6895 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶)} = {⟨⟨𝑧, 𝑤⟩, 𝑢⟩ ∣ ((𝑧𝐴𝑤𝐷) ∧ 𝑢 = 𝐸)}
37 df-mpt2 6819 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶)}
38 df-mpt2 6819 . 2 (𝑧𝐴, 𝑤𝐷𝐸) = {⟨⟨𝑧, 𝑤⟩, 𝑢⟩ ∣ ((𝑧𝐴𝑤𝐷) ∧ 𝑢 = 𝐸)}
3936, 37, 383eqtr4i 2792 1 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝐷𝐸)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2139  Ⅎwnfc 2889  {coprab 6815   ↦ cmpt2 6816 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-opab 4865  df-oprab 6818  df-mpt2 6819 This theorem is referenced by:  cbvmpt2  6900  mpt2mptsx  7402  dmmpt2ssx  7404  gsumcom2  18594  ptcmpg  22082
 Copyright terms: Public domain W3C validator