![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvmpt2v | Structured version Visualization version GIF version |
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. With a longer proof analogous to cbvmpt 4901, some distinct variable requirements could be eliminated. (Contributed by NM, 11-Jun-2013.) |
Ref | Expression |
---|---|
cbvmpt2v.1 | ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐸) |
cbvmpt2v.2 | ⊢ (𝑦 = 𝑤 → 𝐸 = 𝐷) |
Ref | Expression |
---|---|
cbvmpt2v | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2902 | . 2 ⊢ Ⅎ𝑧𝐶 | |
2 | nfcv 2902 | . 2 ⊢ Ⅎ𝑤𝐶 | |
3 | nfcv 2902 | . 2 ⊢ Ⅎ𝑥𝐷 | |
4 | nfcv 2902 | . 2 ⊢ Ⅎ𝑦𝐷 | |
5 | cbvmpt2v.1 | . . 3 ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐸) | |
6 | cbvmpt2v.2 | . . 3 ⊢ (𝑦 = 𝑤 → 𝐸 = 𝐷) | |
7 | 5, 6 | sylan9eq 2814 | . 2 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝐶 = 𝐷) |
8 | 1, 2, 3, 4, 7 | cbvmpt2 6899 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ↦ cmpt2 6815 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-opab 4865 df-oprab 6817 df-mpt2 6818 |
This theorem is referenced by: seqomlem0 7713 dffi3 8502 cantnfsuc 8740 fin23lem33 9359 om2uzrdg 12949 uzrdgsuci 12953 sadcp1 15379 smupp1 15404 imasvscafn 16399 mgmnsgrpex 17619 sgrpnmndex 17620 sylow1 18218 sylow2b 18238 sylow3lem5 18246 sylow3 18248 efgmval 18325 efgtf 18335 frlmphl 20322 pmatcollpw3lem 20790 mp2pm2mplem3 20815 txbas 21572 bcth 23326 opnmbl 23570 mbfimaopn 23622 mbfi1fseq 23687 motplusg 25636 ttgval 25954 opsqrlem3 29310 mdetpmtr12 30200 madjusmdetlem4 30205 fvproj 30208 dya2iocival 30644 sxbrsigalem5 30659 sxbrsigalem6 30660 eulerpart 30753 sseqp1 30766 cvmliftlem15 31587 cvmlift2 31605 opnmbllem0 33758 mblfinlem1 33759 mblfinlem2 33760 sdc 33853 tendoplcbv 36565 dvhvaddcbv 36880 dvhvscacbv 36889 fsovcnvlem 38809 ntrneibex 38873 ioorrnopn 41028 hoidmvle 41320 ovnhoi 41323 hoimbl 41351 smflimlem6 41490 funcrngcsetc 42508 funcrngcsetcALT 42509 funcringcsetc 42545 lmod1zr 42792 |
Copyright terms: Public domain | W3C validator |