![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvmpt | Structured version Visualization version GIF version |
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011.) |
Ref | Expression |
---|---|
cbvmpt.1 | ⊢ Ⅎ𝑦𝐵 |
cbvmpt.2 | ⊢ Ⅎ𝑥𝐶 |
cbvmpt.3 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbvmpt | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1883 | . . . 4 ⊢ Ⅎ𝑤(𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) | |
2 | nfv 1883 | . . . . 5 ⊢ Ⅎ𝑥 𝑤 ∈ 𝐴 | |
3 | nfs1v 2465 | . . . . 5 ⊢ Ⅎ𝑥[𝑤 / 𝑥]𝑧 = 𝐵 | |
4 | 2, 3 | nfan 1868 | . . . 4 ⊢ Ⅎ𝑥(𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵) |
5 | eleq1 2718 | . . . . 5 ⊢ (𝑥 = 𝑤 → (𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴)) | |
6 | sbequ12 2149 | . . . . 5 ⊢ (𝑥 = 𝑤 → (𝑧 = 𝐵 ↔ [𝑤 / 𝑥]𝑧 = 𝐵)) | |
7 | 5, 6 | anbi12d 747 | . . . 4 ⊢ (𝑥 = 𝑤 → ((𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) ↔ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵))) |
8 | 1, 4, 7 | cbvopab1 4756 | . . 3 ⊢ {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)} |
9 | nfv 1883 | . . . . 5 ⊢ Ⅎ𝑦 𝑤 ∈ 𝐴 | |
10 | cbvmpt.1 | . . . . . . 7 ⊢ Ⅎ𝑦𝐵 | |
11 | 10 | nfeq2 2809 | . . . . . 6 ⊢ Ⅎ𝑦 𝑧 = 𝐵 |
12 | 11 | nfsb 2468 | . . . . 5 ⊢ Ⅎ𝑦[𝑤 / 𝑥]𝑧 = 𝐵 |
13 | 9, 12 | nfan 1868 | . . . 4 ⊢ Ⅎ𝑦(𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵) |
14 | nfv 1883 | . . . 4 ⊢ Ⅎ𝑤(𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶) | |
15 | eleq1 2718 | . . . . 5 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
16 | sbequ 2404 | . . . . . 6 ⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝑧 = 𝐵 ↔ [𝑦 / 𝑥]𝑧 = 𝐵)) | |
17 | cbvmpt.2 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐶 | |
18 | 17 | nfeq2 2809 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑧 = 𝐶 |
19 | cbvmpt.3 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
20 | 19 | eqeq2d 2661 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝐵 ↔ 𝑧 = 𝐶)) |
21 | 18, 20 | sbie 2436 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝑧 = 𝐵 ↔ 𝑧 = 𝐶) |
22 | 16, 21 | syl6bb 276 | . . . . 5 ⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝑧 = 𝐵 ↔ 𝑧 = 𝐶)) |
23 | 15, 22 | anbi12d 747 | . . . 4 ⊢ (𝑤 = 𝑦 → ((𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶))) |
24 | 13, 14, 23 | cbvopab1 4756 | . . 3 ⊢ {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥]𝑧 = 𝐵)} = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶)} |
25 | 8, 24 | eqtri 2673 | . 2 ⊢ {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶)} |
26 | df-mpt 4763 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} | |
27 | df-mpt 4763 | . 2 ⊢ (𝑦 ∈ 𝐴 ↦ 𝐶) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶)} | |
28 | 25, 26, 27 | 3eqtr4i 2683 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 [wsb 1937 ∈ wcel 2030 Ⅎwnfc 2780 {copab 4745 ↦ cmpt 4762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-opab 4746 df-mpt 4763 |
This theorem is referenced by: cbvmptv 4783 dffn5f 6291 fvmpts 6324 fvmpt2i 6329 fvmptex 6333 fmptcof 6437 fmptcos 6438 fliftfuns 6604 offval2 6956 ofmpteq 6958 mpt2curryvald 7441 qliftfuns 7877 axcc2 9297 ac6num 9339 seqof2 12899 summolem2a 14490 zsum 14493 fsumcvg2 14502 fsumrlim 14587 cbvprod 14689 prodmolem2a 14708 zprod 14711 fprod 14715 pcmptdvds 15645 prdsdsval2 16191 gsumconstf 18381 gsummpt1n0 18410 gsum2d2 18419 dprd2d2 18489 gsumdixp 18655 psrass1lem 19425 coe1fzgsumdlem 19719 gsumply1eq 19723 evl1gsumdlem 19768 madugsum 20497 cnmpt1t 21516 cnmpt2k 21539 elmptrab 21678 flfcnp2 21858 prdsxmet 22221 fsumcn 22720 ovoliunlem3 23318 ovoliun 23319 ovoliun2 23320 voliun 23368 mbfpos 23463 mbfposb 23465 i1fposd 23519 itg2cnlem1 23573 isibl2 23578 cbvitg 23587 itgss3 23626 itgfsum 23638 itgabs 23646 itgcn 23654 limcmpt 23692 dvmptfsum 23783 lhop2 23823 dvfsumle 23829 dvfsumlem2 23835 itgsubstlem 23856 itgsubst 23857 itgulm2 24208 rlimcnp2 24738 gsummpt2co 29908 esumsnf 30254 mbfposadd 33587 itgabsnc 33609 ftc1cnnclem 33613 ftc2nc 33624 mzpsubst 37628 rabdiophlem2 37683 aomclem8 37948 fsumcnf 39494 disjf1 39683 disjrnmpt2 39689 disjinfi 39694 fmptf 39762 cncfmptss 40137 mulc1cncfg 40139 expcnfg 40141 fprodcn 40150 fnlimabslt 40229 climmptf 40231 liminfvalxr 40333 icccncfext 40418 cncficcgt0 40419 cncfiooicclem1 40424 fprodcncf 40432 dvmptmulf 40470 iblsplitf 40504 stoweidlem21 40556 stirlinglem4 40612 stirlinglem13 40621 stirlinglem15 40623 fourierd 40757 fourierclimd 40758 sge0iunmptlemre 40950 sge0iunmpt 40953 sge0ltfirpmpt2 40961 sge0isummpt2 40967 sge0xaddlem2 40969 sge0xadd 40970 meadjiun 41001 meaiunincf 41018 meaiuninc3 41020 omeiunle 41052 caratheodorylem2 41062 ovncvrrp 41099 vonioo 41217 smflim2 41333 smfsup 41341 smfinf 41345 smflimsup 41355 smfliminf 41358 |
Copyright terms: Public domain | W3C validator |