![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvixpv | Structured version Visualization version GIF version |
Description: Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
cbvixpv.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbvixpv | ⊢ X𝑥 ∈ 𝐴 𝐵 = X𝑦 ∈ 𝐴 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2793 | . 2 ⊢ Ⅎ𝑦𝐵 | |
2 | nfcv 2793 | . 2 ⊢ Ⅎ𝑥𝐶 | |
3 | cbvixpv.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
4 | 1, 2, 3 | cbvixp 7967 | 1 ⊢ X𝑥 ∈ 𝐴 𝐵 = X𝑦 ∈ 𝐴 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 Xcixp 7950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-iota 5889 df-fn 5929 df-fv 5934 df-ixp 7951 |
This theorem is referenced by: funcpropd 16607 invfuc 16681 natpropd 16683 dprdw 18455 dprdwd 18456 ptuni2 21427 ptbasin 21428 ptbasfi 21432 ptpjopn 21463 ptclsg 21466 dfac14 21469 ptcnp 21473 ptcmplem2 21904 ptcmpg 21908 prdsxmslem2 22381 upixp 33654 rrxsnicc 40838 ioorrnopn 40843 ioorrnopnxr 40845 ovnsubadd 41107 hoidmvlelem4 41133 hoidmvle 41135 hspdifhsp 41151 hoiqssbllem2 41158 hspmbl 41164 hoimbl 41166 opnvonmbl 41169 ovnovollem3 41193 |
Copyright terms: Public domain | W3C validator |