Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvexdva Structured version   Visualization version   GIF version

Theorem cbvexdva 2282
 Description: Rule used to change the bound variable in an existential quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.) Remove dependency on ax-10 2016. (Revised by Wolf Lammen, 18-Jul-2021.)
Hypothesis
Ref Expression
cbvaldva.1 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
Assertion
Ref Expression
cbvexdva (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒))
Distinct variable groups:   𝜓,𝑦   𝜒,𝑥   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem cbvexdva
StepHypRef Expression
1 cbvaldva.1 . . . . 5 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
21notbid 308 . . . 4 ((𝜑𝑥 = 𝑦) → (¬ 𝜓 ↔ ¬ 𝜒))
32cbvaldva 2280 . . 3 (𝜑 → (∀𝑥 ¬ 𝜓 ↔ ∀𝑦 ¬ 𝜒))
4 alnex 1703 . . 3 (∀𝑥 ¬ 𝜓 ↔ ¬ ∃𝑥𝜓)
5 alnex 1703 . . 3 (∀𝑦 ¬ 𝜒 ↔ ¬ ∃𝑦𝜒)
63, 4, 53bitr3g 302 . 2 (𝜑 → (¬ ∃𝑥𝜓 ↔ ¬ ∃𝑦𝜒))
76con4bid 307 1 (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 384  ∀wal 1478  ∃wex 1701 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245 This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1702  df-nf 1707 This theorem is referenced by:  cbvex2v  2286  cbvrexdva2  3168  isinf  8133
 Copyright terms: Public domain W3C validator