![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbveu | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 25-Nov-1994.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
cbveu.1 | ⊢ Ⅎ𝑦𝜑 |
cbveu.2 | ⊢ Ⅎ𝑥𝜓 |
cbveu.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbveu | ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbveu.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | sb8eu 2641 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑) |
3 | cbveu.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
4 | cbveu.3 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
5 | 3, 4 | sbie 2545 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
6 | 5 | eubii 2629 | . 2 ⊢ (∃!𝑦[𝑦 / 𝑥]𝜑 ↔ ∃!𝑦𝜓) |
7 | 2, 6 | bitri 264 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 Ⅎwnf 1857 [wsb 2046 ∃!weu 2607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 |
This theorem is referenced by: cbvmo 2644 cbvreu 3308 cbvreucsf 3708 tz6.12f 6373 f1ompt 6545 climeu 14485 initoeu2 16867 |
Copyright terms: Public domain | W3C validator |