MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvdisjv Structured version   Visualization version   GIF version

Theorem cbvdisjv 4763
Description: Change bound variables in a disjoint collection. (Contributed by Mario Carneiro, 11-Dec-2016.)
Hypothesis
Ref Expression
cbvdisjv.1 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
cbvdisjv (Disj 𝑥𝐴 𝐵Disj 𝑦𝐴 𝐶)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑦)

Proof of Theorem cbvdisjv
StepHypRef Expression
1 nfcv 2912 . 2 𝑦𝐵
2 nfcv 2912 . 2 𝑥𝐶
3 cbvdisjv.1 . 2 (𝑥 = 𝑦𝐵 = 𝐶)
41, 2, 3cbvdisj 4762 1 (Disj 𝑥𝐴 𝐵Disj 𝑦𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1630  Disj wdisj 4752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-disj 4753
This theorem is referenced by:  uniioombllem4  23573  hashunif  29896  totprob  30823  disjrnmpt2  39889  ismeannd  41195  psmeasure  41199  volmea  41202  meaiuninclem  41208  caratheodorylem1  41254  caratheodory  41256
  Copyright terms: Public domain W3C validator