![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvalv | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) Remove dependency on ax-10 2132. (Revised by Wolf Lammen, 17-Jul-2021.) |
Ref | Expression |
---|---|
cbvalv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvalv | ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1952 | . . . 4 ⊢ (𝜑 → ∀𝑦𝜑) | |
2 | 1 | hbal 2149 | . . 3 ⊢ (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) |
3 | cbvalv.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 3 | spv 2369 | . . 3 ⊢ (∀𝑥𝜑 → 𝜓) |
5 | 2, 4 | alrimih 1864 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) |
6 | ax-5 1952 | . . . 4 ⊢ (𝜓 → ∀𝑥𝜓) | |
7 | 6 | hbal 2149 | . . 3 ⊢ (∀𝑦𝜓 → ∀𝑥∀𝑦𝜓) |
8 | 3 | equcoms 2066 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) |
9 | 8 | bicomd 213 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝜓 ↔ 𝜑)) |
10 | 9 | spv 2369 | . . 3 ⊢ (∀𝑦𝜓 → 𝜑) |
11 | 7, 10 | alrimih 1864 | . 2 ⊢ (∀𝑦𝜓 → ∀𝑥𝜑) |
12 | 5, 11 | impbii 199 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wal 1594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-11 2147 ax-12 2160 ax-13 2355 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1818 |
This theorem is referenced by: cbvexv 2384 cbvaldva 2390 cbval2v 2394 nfcjust 2854 cdeqal1 3532 zfpow 4949 tfisi 7175 pssnn 8294 findcard 8315 findcard3 8319 zfinf 8649 aceq0 9054 kmlem1 9085 kmlem13 9097 fin23lem32 9279 fin23lem41 9287 zfac 9395 zfcndpow 9551 zfcndinf 9553 zfcndac 9554 axgroth4 9767 relexpindlem 13923 ramcl 15856 mreexexlemd 16427 bnj1112 31279 dfon2lem6 31919 dfon2lem7 31920 dfon2 31923 phpreu 33625 axc11n-16 34644 dfac11 38051 |
Copyright terms: Public domain | W3C validator |