MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbv3 Structured version   Visualization version   GIF version

Theorem cbv3 2301
Description: Rule used to change bound variables, using implicit substitution, that does not use ax-c9 34494. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-May-2018.)
Hypotheses
Ref Expression
cbv3.1 𝑦𝜑
cbv3.2 𝑥𝜓
cbv3.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbv3 (∀𝑥𝜑 → ∀𝑦𝜓)

Proof of Theorem cbv3
StepHypRef Expression
1 cbv3.1 . . 3 𝑦𝜑
21nfal 2191 . 2 𝑦𝑥𝜑
3 cbv3.2 . . 3 𝑥𝜓
4 cbv3.3 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
53, 4spim 2290 . 2 (∀𝑥𝜑𝜓)
62, 5alrimi 2120 1 (∀𝑥𝜑 → ∀𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1521  wnf 1748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282
This theorem depends on definitions:  df-bi 197  df-an 385  df-ex 1745  df-nf 1750
This theorem is referenced by:  cbv3h  2302  cbv1  2303  cbval  2307  axc16i  2353  bj-mo3OLD  32957
  Copyright terms: Public domain W3C validator