MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cayleylem2 Structured version   Visualization version   GIF version

Theorem cayleylem2 17879
Description: Lemma for cayley 17880. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
cayleylem1.x 𝑋 = (Base‘𝐺)
cayleylem1.p + = (+g𝐺)
cayleylem1.u 0 = (0g𝐺)
cayleylem1.h 𝐻 = (SymGrp‘𝑋)
cayleylem1.s 𝑆 = (Base‘𝐻)
cayleylem1.f 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
Assertion
Ref Expression
cayleylem2 (𝐺 ∈ Grp → 𝐹:𝑋1-1𝑆)
Distinct variable groups:   𝑔,𝑎, +   𝐺,𝑎,𝑔   𝑔,𝐻   𝑋,𝑎,𝑔   0 ,𝑎
Allowed substitution hints:   𝑆(𝑔,𝑎)   𝐹(𝑔,𝑎)   𝐻(𝑎)   0 (𝑔)

Proof of Theorem cayleylem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6228 . . . 4 ((𝐹𝑥) = (0g𝐻) → ((𝐹𝑥)‘ 0 ) = ((0g𝐻)‘ 0 ))
2 simpr 476 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → 𝑥𝑋)
3 cayleylem1.x . . . . . . . . 9 𝑋 = (Base‘𝐺)
4 cayleylem1.u . . . . . . . . 9 0 = (0g𝐺)
53, 4grpidcl 17497 . . . . . . . 8 (𝐺 ∈ Grp → 0𝑋)
65adantr 480 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → 0𝑋)
7 cayleylem1.f . . . . . . . 8 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
87, 3grplactval 17564 . . . . . . 7 ((𝑥𝑋0𝑋) → ((𝐹𝑥)‘ 0 ) = (𝑥 + 0 ))
92, 6, 8syl2anc 694 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((𝐹𝑥)‘ 0 ) = (𝑥 + 0 ))
10 cayleylem1.p . . . . . . 7 + = (+g𝐺)
113, 10, 4grprid 17500 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (𝑥 + 0 ) = 𝑥)
129, 11eqtrd 2685 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((𝐹𝑥)‘ 0 ) = 𝑥)
13 fvex 6239 . . . . . . . . 9 (Base‘𝐺) ∈ V
143, 13eqeltri 2726 . . . . . . . 8 𝑋 ∈ V
15 cayleylem1.h . . . . . . . . 9 𝐻 = (SymGrp‘𝑋)
1615symgid 17867 . . . . . . . 8 (𝑋 ∈ V → ( I ↾ 𝑋) = (0g𝐻))
1714, 16ax-mp 5 . . . . . . 7 ( I ↾ 𝑋) = (0g𝐻)
1817fveq1i 6230 . . . . . 6 (( I ↾ 𝑋)‘ 0 ) = ((0g𝐻)‘ 0 )
19 fvresi 6480 . . . . . . 7 ( 0𝑋 → (( I ↾ 𝑋)‘ 0 ) = 0 )
206, 19syl 17 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (( I ↾ 𝑋)‘ 0 ) = 0 )
2118, 20syl5eqr 2699 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((0g𝐻)‘ 0 ) = 0 )
2212, 21eqeq12d 2666 . . . 4 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (((𝐹𝑥)‘ 0 ) = ((0g𝐻)‘ 0 ) ↔ 𝑥 = 0 ))
231, 22syl5ib 234 . . 3 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((𝐹𝑥) = (0g𝐻) → 𝑥 = 0 ))
2423ralrimiva 2995 . 2 (𝐺 ∈ Grp → ∀𝑥𝑋 ((𝐹𝑥) = (0g𝐻) → 𝑥 = 0 ))
25 cayleylem1.s . . . 4 𝑆 = (Base‘𝐻)
263, 10, 4, 15, 25, 7cayleylem1 17878 . . 3 (𝐺 ∈ Grp → 𝐹 ∈ (𝐺 GrpHom 𝐻))
27 eqid 2651 . . . 4 (0g𝐻) = (0g𝐻)
283, 25, 4, 27ghmf1 17736 . . 3 (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐹:𝑋1-1𝑆 ↔ ∀𝑥𝑋 ((𝐹𝑥) = (0g𝐻) → 𝑥 = 0 )))
2926, 28syl 17 . 2 (𝐺 ∈ Grp → (𝐹:𝑋1-1𝑆 ↔ ∀𝑥𝑋 ((𝐹𝑥) = (0g𝐻) → 𝑥 = 0 )))
3024, 29mpbird 247 1 (𝐺 ∈ Grp → 𝐹:𝑋1-1𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wral 2941  Vcvv 3231  cmpt 4762   I cid 5052  cres 5145  1-1wf1 5923  cfv 5926  (class class class)co 6690  Basecbs 15904  +gcplusg 15988  0gc0g 16147  Grpcgrp 17469   GrpHom cghm 17704  SymGrpcsymg 17843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-tset 16007  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-sbg 17474  df-subg 17638  df-ghm 17705  df-ga 17769  df-symg 17844
This theorem is referenced by:  cayley  17880
  Copyright terms: Public domain W3C validator