![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cayley | Structured version Visualization version GIF version |
Description: Cayley's Theorem (constructive version): given group 𝐺, 𝐹 is an isomorphism between 𝐺 and the subgroup 𝑆 of the symmetric group 𝐻 on the underlying set 𝑋 of 𝐺. See also Theorem 3.15 in [Rotman] p. 42. (Contributed by Paul Chapman, 3-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Jan-2015.) |
Ref | Expression |
---|---|
cayley.x | ⊢ 𝑋 = (Base‘𝐺) |
cayley.h | ⊢ 𝐻 = (SymGrp‘𝑋) |
cayley.p | ⊢ + = (+g‘𝐺) |
cayley.f | ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) |
cayley.s | ⊢ 𝑆 = ran 𝐹 |
Ref | Expression |
---|---|
cayley | ⊢ (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐻) ∧ 𝐹 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑆)) ∧ 𝐹:𝑋–1-1-onto→𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cayley.s | . . 3 ⊢ 𝑆 = ran 𝐹 | |
2 | cayley.x | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
3 | cayley.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
4 | eqid 2760 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
5 | cayley.h | . . . . 5 ⊢ 𝐻 = (SymGrp‘𝑋) | |
6 | eqid 2760 | . . . . 5 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
7 | cayley.f | . . . . 5 ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) | |
8 | 2, 3, 4, 5, 6, 7 | cayleylem1 18052 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
9 | ghmrn 17894 | . . . 4 ⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → ran 𝐹 ∈ (SubGrp‘𝐻)) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ (𝐺 ∈ Grp → ran 𝐹 ∈ (SubGrp‘𝐻)) |
11 | 1, 10 | syl5eqel 2843 | . 2 ⊢ (𝐺 ∈ Grp → 𝑆 ∈ (SubGrp‘𝐻)) |
12 | 1 | eqimss2i 3801 | . . . 4 ⊢ ran 𝐹 ⊆ 𝑆 |
13 | eqid 2760 | . . . . 5 ⊢ (𝐻 ↾s 𝑆) = (𝐻 ↾s 𝑆) | |
14 | 13 | resghm2b 17899 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐻) ∧ ran 𝐹 ⊆ 𝑆) → (𝐹 ∈ (𝐺 GrpHom 𝐻) ↔ 𝐹 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑆)))) |
15 | 11, 12, 14 | sylancl 697 | . . 3 ⊢ (𝐺 ∈ Grp → (𝐹 ∈ (𝐺 GrpHom 𝐻) ↔ 𝐹 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑆)))) |
16 | 8, 15 | mpbid 222 | . 2 ⊢ (𝐺 ∈ Grp → 𝐹 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑆))) |
17 | 2, 3, 4, 5, 6, 7 | cayleylem2 18053 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐹:𝑋–1-1→(Base‘𝐻)) |
18 | f1f1orn 6310 | . . . 4 ⊢ (𝐹:𝑋–1-1→(Base‘𝐻) → 𝐹:𝑋–1-1-onto→ran 𝐹) | |
19 | 17, 18 | syl 17 | . . 3 ⊢ (𝐺 ∈ Grp → 𝐹:𝑋–1-1-onto→ran 𝐹) |
20 | f1oeq3 6291 | . . . 4 ⊢ (𝑆 = ran 𝐹 → (𝐹:𝑋–1-1-onto→𝑆 ↔ 𝐹:𝑋–1-1-onto→ran 𝐹)) | |
21 | 1, 20 | ax-mp 5 | . . 3 ⊢ (𝐹:𝑋–1-1-onto→𝑆 ↔ 𝐹:𝑋–1-1-onto→ran 𝐹) |
22 | 19, 21 | sylibr 224 | . 2 ⊢ (𝐺 ∈ Grp → 𝐹:𝑋–1-1-onto→𝑆) |
23 | 11, 16, 22 | 3jca 1123 | 1 ⊢ (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐻) ∧ 𝐹 ∈ (𝐺 GrpHom (𝐻 ↾s 𝑆)) ∧ 𝐹:𝑋–1-1-onto→𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ⊆ wss 3715 ↦ cmpt 4881 ran crn 5267 –1-1→wf1 6046 –1-1-onto→wf1o 6048 ‘cfv 6049 (class class class)co 6814 Basecbs 16079 ↾s cress 16080 +gcplusg 16163 0gc0g 16322 Grpcgrp 17643 SubGrpcsubg 17809 GrpHom cghm 17878 SymGrpcsymg 18017 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-oadd 7734 df-er 7913 df-map 8027 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-2 11291 df-3 11292 df-4 11293 df-5 11294 df-6 11295 df-7 11296 df-8 11297 df-9 11298 df-n0 11505 df-z 11590 df-uz 11900 df-fz 12540 df-struct 16081 df-ndx 16082 df-slot 16083 df-base 16085 df-sets 16086 df-ress 16087 df-plusg 16176 df-tset 16182 df-0g 16324 df-mgm 17463 df-sgrp 17505 df-mnd 17516 df-mhm 17556 df-submnd 17557 df-grp 17646 df-minusg 17647 df-sbg 17648 df-subg 17812 df-ghm 17879 df-ga 17943 df-symg 18018 |
This theorem is referenced by: cayleyth 18055 |
Copyright terms: Public domain | W3C validator |