MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caurcvgr Structured version   Visualization version   GIF version

Theorem caurcvgr 14612
Description: A Cauchy sequence of real numbers converges to its limit supremum. The third hypothesis specifies that 𝐹 is a Cauchy sequence. (Contributed by Mario Carneiro, 7-May-2016.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
caurcvgr.1 (𝜑𝐴 ⊆ ℝ)
caurcvgr.2 (𝜑𝐹:𝐴⟶ℝ)
caurcvgr.3 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
caurcvgr.4 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
Assertion
Ref Expression
caurcvgr (𝜑𝐹𝑟 (lim sup‘𝐹))
Distinct variable groups:   𝑗,𝑘,𝑥,𝐴   𝑗,𝐹,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥

Proof of Theorem caurcvgr
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 caurcvgr.1 . . . . 5 (𝜑𝐴 ⊆ ℝ)
2 caurcvgr.2 . . . . 5 (𝜑𝐹:𝐴⟶ℝ)
3 caurcvgr.3 . . . . 5 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
4 caurcvgr.4 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
5 1rp 12039 . . . . . 6 1 ∈ ℝ+
65a1i 11 . . . . 5 (𝜑 → 1 ∈ ℝ+)
71, 2, 3, 4, 6caucvgrlem 14611 . . . 4 (𝜑 → ∃𝑗𝐴 ((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · 1))))
8 simpl 468 . . . . 5 (((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · 1))) → (lim sup‘𝐹) ∈ ℝ)
98rexlimivw 3177 . . . 4 (∃𝑗𝐴 ((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · 1))) → (lim sup‘𝐹) ∈ ℝ)
107, 9syl 17 . . 3 (𝜑 → (lim sup‘𝐹) ∈ ℝ)
1110recnd 10270 . 2 (𝜑 → (lim sup‘𝐹) ∈ ℂ)
121adantr 466 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → 𝐴 ⊆ ℝ)
132adantr 466 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → 𝐹:𝐴⟶ℝ)
143adantr 466 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → sup(𝐴, ℝ*, < ) = +∞)
154adantr 466 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
16 simpr 471 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
17 3re 11296 . . . . . . . . 9 3 ∈ ℝ
18 3pos 11316 . . . . . . . . 9 0 < 3
1917, 18elrpii 12038 . . . . . . . 8 3 ∈ ℝ+
20 rpdivcl 12059 . . . . . . . 8 ((𝑦 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (𝑦 / 3) ∈ ℝ+)
2116, 19, 20sylancl 574 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → (𝑦 / 3) ∈ ℝ+)
2212, 13, 14, 15, 21caucvgrlem 14611 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝐴 ((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3)))))
23 simpr 471 . . . . . . 7 (((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3)))) → ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3))))
2423reximi 3159 . . . . . 6 (∃𝑗𝐴 ((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3)))) → ∃𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3))))
2522, 24syl 17 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3))))
26 ssrexv 3816 . . . . 5 (𝐴 ⊆ ℝ → (∃𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3))) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3)))))
2712, 25, 26sylc 65 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3))))
28 rpcn 12044 . . . . . . . . 9 (𝑦 ∈ ℝ+𝑦 ∈ ℂ)
2928adantl 467 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℂ)
30 3cn 11297 . . . . . . . . 9 3 ∈ ℂ
3130a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 3 ∈ ℂ)
32 3ne0 11317 . . . . . . . . 9 3 ≠ 0
3332a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 3 ≠ 0)
3429, 31, 33divcan2d 11005 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → (3 · (𝑦 / 3)) = 𝑦)
3534breq2d 4798 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → ((abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3)) ↔ (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑦))
3635imbi2d 329 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ((𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3))) ↔ (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑦)))
3736rexralbidv 3206 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · (𝑦 / 3))) ↔ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑦)))
3827, 37mpbid 222 . . 3 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑦))
3938ralrimiva 3115 . 2 (𝜑 → ∀𝑦 ∈ ℝ+𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑦))
40 ax-resscn 10195 . . . 4 ℝ ⊆ ℂ
41 fss 6196 . . . 4 ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐴⟶ℂ)
422, 40, 41sylancl 574 . . 3 (𝜑𝐹:𝐴⟶ℂ)
43 eqidd 2772 . . 3 ((𝜑𝑘𝐴) → (𝐹𝑘) = (𝐹𝑘))
4442, 1, 43rlim 14434 . 2 (𝜑 → (𝐹𝑟 (lim sup‘𝐹) ↔ ((lim sup‘𝐹) ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < 𝑦))))
4511, 39, 44mpbir2and 692 1 (𝜑𝐹𝑟 (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  wne 2943  wral 3061  wrex 3062  wss 3723   class class class wbr 4786  wf 6027  cfv 6031  (class class class)co 6793  supcsup 8502  cc 10136  cr 10137  0cc0 10138  1c1 10139   · cmul 10143  +∞cpnf 10273  *cxr 10275   < clt 10276  cle 10277  cmin 10468   / cdiv 10886  3c3 11273  +crp 12035  abscabs 14182  lim supclsp 14409  𝑟 crli 14424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-pm 8012  df-en 8110  df-dom 8111  df-sdom 8112  df-sup 8504  df-inf 8505  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-ico 12386  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-limsup 14410  df-rlim 14428
This theorem is referenced by:  caucvgrlem2  14613  caurcvg  14615
  Copyright terms: Public domain W3C validator