MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caurcvg2 Structured version   Visualization version   GIF version

Theorem caurcvg2 14607
Description: A Cauchy sequence of real numbers converges, existence version. (Contributed by NM, 4-Apr-2005.) (Revised by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
caucvg.1 𝑍 = (ℤ𝑀)
caurcvg2.2 (𝜑𝐹𝑉)
caurcvg2.3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
Assertion
Ref Expression
caurcvg2 (𝜑𝐹 ∈ dom ⇝ )
Distinct variable groups:   𝑗,𝑘,𝑥,𝐹   𝑗,𝑀,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝑉(𝑥,𝑗,𝑘)

Proof of Theorem caurcvg2
Dummy variables 𝑖 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1rp 12029 . . . 4 1 ∈ ℝ+
21ne0ii 4066 . . 3 + ≠ ∅
3 caurcvg2.3 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
4 r19.2z 4204 . . 3 ((ℝ+ ≠ ∅ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)) → ∃𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
52, 3, 4sylancr 698 . 2 (𝜑 → ∃𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
6 simpl 474 . . . . . 6 (((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (𝐹𝑘) ∈ ℝ)
76ralimi 3090 . . . . 5 (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)
8 eqid 2760 . . . . . . . . 9 (ℤ𝑗) = (ℤ𝑗)
9 simprr 813 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)
10 fveq2 6352 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
1110eleq1d 2824 . . . . . . . . . . . 12 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑛) ∈ ℝ))
1211rspccva 3448 . . . . . . . . . . 11 ((∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ ∧ 𝑛 ∈ (ℤ𝑗)) → (𝐹𝑛) ∈ ℝ)
139, 12sylan 489 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) ∧ 𝑛 ∈ (ℤ𝑗)) → (𝐹𝑛) ∈ ℝ)
14 eqid 2760 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛)) = (𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))
1513, 14fmptd 6548 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → (𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛)):(ℤ𝑗)⟶ℝ)
16 fveq2 6352 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑚 → (ℤ𝑗) = (ℤ𝑚))
17 fveq2 6352 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑚 → (𝐹𝑗) = (𝐹𝑚))
1817oveq2d 6829 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑚 → ((𝐹𝑘) − (𝐹𝑗)) = ((𝐹𝑘) − (𝐹𝑚)))
1918fveq2d 6356 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑚 → (abs‘((𝐹𝑘) − (𝐹𝑗))) = (abs‘((𝐹𝑘) − (𝐹𝑚))))
2019breq1d 4814 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑚 → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 ↔ (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))
2120anbi2d 742 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑚 → (((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)))
2216, 21raleqbidv 3291 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑚 → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑚)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)))
2322cbvrexv 3311 . . . . . . . . . . . . . . 15 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∃𝑚𝑍𝑘 ∈ (ℤ𝑚)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))
24 fveq2 6352 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → (𝐹𝑘) = (𝐹𝑖))
2524eleq1d 2824 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑖) ∈ ℝ))
2624oveq1d 6828 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → ((𝐹𝑘) − (𝐹𝑚)) = ((𝐹𝑖) − (𝐹𝑚)))
2726fveq2d 6356 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → (abs‘((𝐹𝑘) − (𝐹𝑚))) = (abs‘((𝐹𝑖) − (𝐹𝑚))))
2827breq1d 4814 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → ((abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥 ↔ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
2925, 28anbi12d 749 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → (((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥) ↔ ((𝐹𝑖) ∈ ℝ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥)))
3029cbvralv 3310 . . . . . . . . . . . . . . . . 17 (∀𝑘 ∈ (ℤ𝑚)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥) ↔ ∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℝ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
31 recn 10218 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑖) ∈ ℝ → (𝐹𝑖) ∈ ℂ)
3231anim1i 593 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑖) ∈ ℝ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) → ((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
3332ralimi 3090 . . . . . . . . . . . . . . . . 17 (∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℝ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) → ∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
3430, 33sylbi 207 . . . . . . . . . . . . . . . 16 (∀𝑘 ∈ (ℤ𝑚)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥) → ∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
3534reximi 3149 . . . . . . . . . . . . . . 15 (∃𝑚𝑍𝑘 ∈ (ℤ𝑚)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
3623, 35sylbi 207 . . . . . . . . . . . . . 14 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
3736ralimi 3090 . . . . . . . . . . . . 13 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑚𝑍𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
383, 37syl 17 . . . . . . . . . . . 12 (𝜑 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
3938adantr 472 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → ∀𝑥 ∈ ℝ+𝑚𝑍𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
40 caucvg.1 . . . . . . . . . . . . 13 𝑍 = (ℤ𝑀)
4140, 8cau4 14295 . . . . . . . . . . . 12 (𝑗𝑍 → (∀𝑥 ∈ ℝ+𝑚𝑍𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥)))
4241ad2antrl 766 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → (∀𝑥 ∈ ℝ+𝑚𝑍𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥)))
4339, 42mpbid 222 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
44 simpr 479 . . . . . . . . . . . . . 14 (((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) → (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥)
458uztrn2 11897 . . . . . . . . . . . . . . . . . 18 ((𝑚 ∈ (ℤ𝑗) ∧ 𝑖 ∈ (ℤ𝑚)) → 𝑖 ∈ (ℤ𝑗))
46 fveq2 6352 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑖 → (𝐹𝑛) = (𝐹𝑖))
47 fvex 6362 . . . . . . . . . . . . . . . . . . 19 (𝐹𝑖) ∈ V
4846, 14, 47fvmpt 6444 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (ℤ𝑗) → ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) = (𝐹𝑖))
4945, 48syl 17 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ (ℤ𝑗) ∧ 𝑖 ∈ (ℤ𝑚)) → ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) = (𝐹𝑖))
50 fveq2 6352 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
51 fvex 6362 . . . . . . . . . . . . . . . . . . 19 (𝐹𝑚) ∈ V
5250, 14, 51fvmpt 6444 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (ℤ𝑗) → ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚) = (𝐹𝑚))
5352adantr 472 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ (ℤ𝑗) ∧ 𝑖 ∈ (ℤ𝑚)) → ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚) = (𝐹𝑚))
5449, 53oveq12d 6831 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ (ℤ𝑗) ∧ 𝑖 ∈ (ℤ𝑚)) → (((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) − ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚)) = ((𝐹𝑖) − (𝐹𝑚)))
5554fveq2d 6356 . . . . . . . . . . . . . . 15 ((𝑚 ∈ (ℤ𝑗) ∧ 𝑖 ∈ (ℤ𝑚)) → (abs‘(((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) − ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚))) = (abs‘((𝐹𝑖) − (𝐹𝑚))))
5655breq1d 4814 . . . . . . . . . . . . . 14 ((𝑚 ∈ (ℤ𝑗) ∧ 𝑖 ∈ (ℤ𝑚)) → ((abs‘(((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) − ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚))) < 𝑥 ↔ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
5744, 56syl5ibr 236 . . . . . . . . . . . . 13 ((𝑚 ∈ (ℤ𝑗) ∧ 𝑖 ∈ (ℤ𝑚)) → (((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) → (abs‘(((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) − ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚))) < 𝑥))
5857ralimdva 3100 . . . . . . . . . . . 12 (𝑚 ∈ (ℤ𝑗) → (∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) → ∀𝑖 ∈ (ℤ𝑚)(abs‘(((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) − ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚))) < 𝑥))
5958reximia 3147 . . . . . . . . . . 11 (∃𝑚 ∈ (ℤ𝑗)∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) → ∃𝑚 ∈ (ℤ𝑗)∀𝑖 ∈ (ℤ𝑚)(abs‘(((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) − ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚))) < 𝑥)
6059ralimi 3090 . . . . . . . . . 10 (∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑖 ∈ (ℤ𝑚)(abs‘(((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) − ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚))) < 𝑥)
6143, 60syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑖 ∈ (ℤ𝑚)(abs‘(((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) − ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚))) < 𝑥)
628, 15, 61caurcvg 14606 . . . . . . . 8 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → (𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛)) ⇝ (lim sup‘(𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))))
63 eluzelz 11889 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
6463, 40eleq2s 2857 . . . . . . . . . 10 (𝑗𝑍𝑗 ∈ ℤ)
6564ad2antrl 766 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → 𝑗 ∈ ℤ)
66 caurcvg2.2 . . . . . . . . . 10 (𝜑𝐹𝑉)
6766adantr 472 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → 𝐹𝑉)
68 fveq2 6352 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
6968cbvmptv 4902 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛)) = (𝑘 ∈ (ℤ𝑗) ↦ (𝐹𝑘))
708, 69climmpt 14501 . . . . . . . . 9 ((𝑗 ∈ ℤ ∧ 𝐹𝑉) → (𝐹 ⇝ (lim sup‘(𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))) ↔ (𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛)) ⇝ (lim sup‘(𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛)))))
7165, 67, 70syl2anc 696 . . . . . . . 8 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → (𝐹 ⇝ (lim sup‘(𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))) ↔ (𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛)) ⇝ (lim sup‘(𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛)))))
7262, 71mpbird 247 . . . . . . 7 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → 𝐹 ⇝ (lim sup‘(𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))))
73 climrel 14422 . . . . . . . 8 Rel ⇝
7473releldmi 5517 . . . . . . 7 (𝐹 ⇝ (lim sup‘(𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))) → 𝐹 ∈ dom ⇝ )
7572, 74syl 17 . . . . . 6 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → 𝐹 ∈ dom ⇝ )
7675expr 644 . . . . 5 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ → 𝐹 ∈ dom ⇝ ))
777, 76syl5 34 . . . 4 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → 𝐹 ∈ dom ⇝ ))
7877rexlimdva 3169 . . 3 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → 𝐹 ∈ dom ⇝ ))
7978rexlimdvw 3172 . 2 (𝜑 → (∃𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → 𝐹 ∈ dom ⇝ ))
805, 79mpd 15 1 (𝜑𝐹 ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wne 2932  wral 3050  wrex 3051  c0 4058   class class class wbr 4804  cmpt 4881  dom cdm 5266  cfv 6049  (class class class)co 6813  cc 10126  cr 10127  1c1 10129   < clt 10266  cmin 10458  cz 11569  cuz 11879  +crp 12025  abscabs 14173  lim supclsp 14400  cli 14414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-pm 8026  df-en 8122  df-dom 8123  df-sdom 8124  df-sup 8513  df-inf 8514  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-z 11570  df-uz 11880  df-rp 12026  df-ico 12374  df-fl 12787  df-seq 12996  df-exp 13055  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-limsup 14401  df-clim 14418  df-rlim 14419
This theorem is referenced by:  iseralt  14614  cvgcmp  14747
  Copyright terms: Public domain W3C validator