MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caurcvg Structured version   Visualization version   GIF version

Theorem caurcvg 14451
Description: A Cauchy sequence of real numbers converges to its limit supremum. The fourth hypothesis specifies that 𝐹 is a Cauchy sequence. (Contributed by NM, 4-Apr-2005.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
caurcvg.1 𝑍 = (ℤ𝑀)
caurcvg.3 (𝜑𝐹:𝑍⟶ℝ)
caurcvg.4 (𝜑 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)
Assertion
Ref Expression
caurcvg (𝜑𝐹 ⇝ (lim sup‘𝐹))
Distinct variable groups:   𝑘,𝑚,𝑥,𝐹   𝑚,𝑀,𝑥   𝜑,𝑘,𝑚,𝑥   𝑘,𝑍,𝑚,𝑥
Allowed substitution hint:   𝑀(𝑘)

Proof of Theorem caurcvg
StepHypRef Expression
1 caurcvg.1 . . . . . 6 𝑍 = (ℤ𝑀)
2 uzssz 11745 . . . . . 6 (ℤ𝑀) ⊆ ℤ
31, 2eqsstri 3668 . . . . 5 𝑍 ⊆ ℤ
4 zssre 11422 . . . . 5 ℤ ⊆ ℝ
53, 4sstri 3645 . . . 4 𝑍 ⊆ ℝ
65a1i 11 . . 3 (𝜑𝑍 ⊆ ℝ)
7 caurcvg.3 . . 3 (𝜑𝐹:𝑍⟶ℝ)
8 1rp 11874 . . . . . 6 1 ∈ ℝ+
98ne0ii 3956 . . . . 5 + ≠ ∅
10 caurcvg.4 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)
11 r19.2z 4093 . . . . 5 ((ℝ+ ≠ ∅ ∧ ∀𝑥 ∈ ℝ+𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥) → ∃𝑥 ∈ ℝ+𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)
129, 10, 11sylancr 696 . . . 4 (𝜑 → ∃𝑥 ∈ ℝ+𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)
13 eluzel2 11730 . . . . . . . . 9 (𝑚 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
1413, 1eleq2s 2748 . . . . . . . 8 (𝑚𝑍𝑀 ∈ ℤ)
151uzsup 12702 . . . . . . . 8 (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞)
1614, 15syl 17 . . . . . . 7 (𝑚𝑍 → sup(𝑍, ℝ*, < ) = +∞)
1716a1d 25 . . . . . 6 (𝑚𝑍 → (∀𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥 → sup(𝑍, ℝ*, < ) = +∞))
1817rexlimiv 3056 . . . . 5 (∃𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥 → sup(𝑍, ℝ*, < ) = +∞)
1918rexlimivw 3058 . . . 4 (∃𝑥 ∈ ℝ+𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥 → sup(𝑍, ℝ*, < ) = +∞)
2012, 19syl 17 . . 3 (𝜑 → sup(𝑍, ℝ*, < ) = +∞)
213sseli 3632 . . . . . . . . . . . 12 (𝑚𝑍𝑚 ∈ ℤ)
223sseli 3632 . . . . . . . . . . . 12 (𝑘𝑍𝑘 ∈ ℤ)
23 eluz 11739 . . . . . . . . . . . 12 ((𝑚 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (ℤ𝑚) ↔ 𝑚𝑘))
2421, 22, 23syl2an 493 . . . . . . . . . . 11 ((𝑚𝑍𝑘𝑍) → (𝑘 ∈ (ℤ𝑚) ↔ 𝑚𝑘))
2524biimprd 238 . . . . . . . . . 10 ((𝑚𝑍𝑘𝑍) → (𝑚𝑘𝑘 ∈ (ℤ𝑚)))
2625expimpd 628 . . . . . . . . 9 (𝑚𝑍 → ((𝑘𝑍𝑚𝑘) → 𝑘 ∈ (ℤ𝑚)))
2726imim1d 82 . . . . . . . 8 (𝑚𝑍 → ((𝑘 ∈ (ℤ𝑚) → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥) → ((𝑘𝑍𝑚𝑘) → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)))
2827exp4a 632 . . . . . . 7 (𝑚𝑍 → ((𝑘 ∈ (ℤ𝑚) → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥) → (𝑘𝑍 → (𝑚𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))))
2928ralimdv2 2990 . . . . . 6 (𝑚𝑍 → (∀𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥 → ∀𝑘𝑍 (𝑚𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)))
3029reximia 3038 . . . . 5 (∃𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥 → ∃𝑚𝑍𝑘𝑍 (𝑚𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))
3130ralimi 2981 . . . 4 (∀𝑥 ∈ ℝ+𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑘𝑍 (𝑚𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))
3210, 31syl 17 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑘𝑍 (𝑚𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))
336, 7, 20, 32caurcvgr 14448 . 2 (𝜑𝐹𝑟 (lim sup‘𝐹))
3414a1d 25 . . . . . 6 (𝑚𝑍 → (∀𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥𝑀 ∈ ℤ))
3534rexlimiv 3056 . . . . 5 (∃𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥𝑀 ∈ ℤ)
3635rexlimivw 3058 . . . 4 (∃𝑥 ∈ ℝ+𝑚𝑍𝑘 ∈ (ℤ𝑚)(abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥𝑀 ∈ ℤ)
3712, 36syl 17 . . 3 (𝜑𝑀 ∈ ℤ)
38 ax-resscn 10031 . . . 4 ℝ ⊆ ℂ
39 fss 6094 . . . 4 ((𝐹:𝑍⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝑍⟶ℂ)
407, 38, 39sylancl 695 . . 3 (𝜑𝐹:𝑍⟶ℂ)
411, 37, 40rlimclim 14321 . 2 (𝜑 → (𝐹𝑟 (lim sup‘𝐹) ↔ 𝐹 ⇝ (lim sup‘𝐹)))
4233, 41mpbid 222 1 (𝜑𝐹 ⇝ (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  wss 3607  c0 3948   class class class wbr 4685  wf 5922  cfv 5926  (class class class)co 6690  supcsup 8387  cc 9972  cr 9973  1c1 9975  +∞cpnf 10109  *cxr 10111   < clt 10112  cle 10113  cmin 10304  cz 11415  cuz 11725  +crp 11870  abscabs 14018  lim supclsp 14245  cli 14259  𝑟 crli 14260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-ico 12219  df-fl 12633  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264
This theorem is referenced by:  caurcvg2  14452  mbflimlem  23479  climlimsup  40310  ioodvbdlimc1lem1  40464
  Copyright terms: Public domain W3C validator