MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucvg Structured version   Visualization version   GIF version

Theorem caucvg 14453
Description: A Cauchy sequence of complex numbers converges to a complex number. Theorem 12-5.3 of [Gleason] p. 180 (sufficiency part). (Contributed by NM, 20-Dec-2006.) (Proof shortened by Mario Carneiro, 15-Feb-2014.) (Revised by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
caucvg.1 𝑍 = (ℤ𝑀)
caucvg.2 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
caucvg.3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
caucvg.4 (𝜑𝐹𝑉)
Assertion
Ref Expression
caucvg (𝜑𝐹 ∈ dom ⇝ )
Distinct variable groups:   𝑗,𝑘,𝑥,𝐹   𝑗,𝑀,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝑉(𝑥,𝑗,𝑘)

Proof of Theorem caucvg
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6229 . . . . . 6 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
21cbvmptv 4783 . . . . 5 (𝑘𝑍 ↦ (𝐹𝑘)) = (𝑛𝑍 ↦ (𝐹𝑛))
3 caucvg.1 . . . . . . . . . 10 𝑍 = (ℤ𝑀)
4 uzssz 11745 . . . . . . . . . 10 (ℤ𝑀) ⊆ ℤ
53, 4eqsstri 3668 . . . . . . . . 9 𝑍 ⊆ ℤ
6 zssre 11422 . . . . . . . . 9 ℤ ⊆ ℝ
75, 6sstri 3645 . . . . . . . 8 𝑍 ⊆ ℝ
87a1i 11 . . . . . . 7 (𝜑𝑍 ⊆ ℝ)
9 caucvg.2 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
102eqcomi 2660 . . . . . . . 8 (𝑛𝑍 ↦ (𝐹𝑛)) = (𝑘𝑍 ↦ (𝐹𝑘))
119, 10fmptd 6425 . . . . . . 7 (𝜑 → (𝑛𝑍 ↦ (𝐹𝑛)):𝑍⟶ℂ)
12 1rp 11874 . . . . . . . . . . 11 1 ∈ ℝ+
1312ne0ii 3956 . . . . . . . . . 10 + ≠ ∅
14 caucvg.3 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
15 r19.2z 4093 . . . . . . . . . 10 ((ℝ+ ≠ ∅ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
1613, 14, 15sylancr 696 . . . . . . . . 9 (𝜑 → ∃𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
17 eluzel2 11730 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
1817, 3eleq2s 2748 . . . . . . . . . . . 12 (𝑗𝑍𝑀 ∈ ℤ)
1918a1d 25 . . . . . . . . . . 11 (𝑗𝑍 → (∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥𝑀 ∈ ℤ))
2019rexlimiv 3056 . . . . . . . . . 10 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥𝑀 ∈ ℤ)
2120rexlimivw 3058 . . . . . . . . 9 (∃𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥𝑀 ∈ ℤ)
2216, 21syl 17 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
233uzsup 12702 . . . . . . . 8 (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞)
2422, 23syl 17 . . . . . . 7 (𝜑 → sup(𝑍, ℝ*, < ) = +∞)
255sseli 3632 . . . . . . . . . . . . . . . 16 (𝑗𝑍𝑗 ∈ ℤ)
265sseli 3632 . . . . . . . . . . . . . . . 16 (𝑘𝑍𝑘 ∈ ℤ)
27 eluz 11739 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (ℤ𝑗) ↔ 𝑗𝑘))
2825, 26, 27syl2an 493 . . . . . . . . . . . . . . 15 ((𝑗𝑍𝑘𝑍) → (𝑘 ∈ (ℤ𝑗) ↔ 𝑗𝑘))
2928biimprd 238 . . . . . . . . . . . . . 14 ((𝑗𝑍𝑘𝑍) → (𝑗𝑘𝑘 ∈ (ℤ𝑗)))
30 fveq2 6229 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
31 eqid 2651 . . . . . . . . . . . . . . . . . . 19 (𝑛𝑍 ↦ (𝐹𝑛)) = (𝑛𝑍 ↦ (𝐹𝑛))
32 fvex 6239 . . . . . . . . . . . . . . . . . . 19 (𝐹𝑛) ∈ V
3330, 31, 32fvmpt3i 6326 . . . . . . . . . . . . . . . . . 18 (𝑘𝑍 → ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) = (𝐹𝑘))
34 fveq2 6229 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑗 → (𝐹𝑛) = (𝐹𝑗))
3534, 31, 32fvmpt3i 6326 . . . . . . . . . . . . . . . . . 18 (𝑗𝑍 → ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗) = (𝐹𝑗))
3633, 35oveqan12rd 6710 . . . . . . . . . . . . . . . . 17 ((𝑗𝑍𝑘𝑍) → (((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗)) = ((𝐹𝑘) − (𝐹𝑗)))
3736fveq2d 6233 . . . . . . . . . . . . . . . 16 ((𝑗𝑍𝑘𝑍) → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) = (abs‘((𝐹𝑘) − (𝐹𝑗))))
3837breq1d 4695 . . . . . . . . . . . . . . 15 ((𝑗𝑍𝑘𝑍) → ((abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥 ↔ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
3938biimprd 238 . . . . . . . . . . . . . 14 ((𝑗𝑍𝑘𝑍) → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥))
4029, 39imim12d 81 . . . . . . . . . . . . 13 ((𝑗𝑍𝑘𝑍) → ((𝑘 ∈ (ℤ𝑗) → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (𝑗𝑘 → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥)))
4140ex 449 . . . . . . . . . . . 12 (𝑗𝑍 → (𝑘𝑍 → ((𝑘 ∈ (ℤ𝑗) → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (𝑗𝑘 → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥))))
4241com23 86 . . . . . . . . . . 11 (𝑗𝑍 → ((𝑘 ∈ (ℤ𝑗) → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (𝑘𝑍 → (𝑗𝑘 → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥))))
4342ralimdv2 2990 . . . . . . . . . 10 (𝑗𝑍 → (∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → ∀𝑘𝑍 (𝑗𝑘 → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥)))
4443reximia 3038 . . . . . . . . 9 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → ∃𝑗𝑍𝑘𝑍 (𝑗𝑘 → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥))
4544ralimi 2981 . . . . . . . 8 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘𝑍 (𝑗𝑘 → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥))
4614, 45syl 17 . . . . . . 7 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘𝑍 (𝑗𝑘 → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥))
478, 11, 24, 46caucvgr 14450 . . . . . 6 (𝜑 → (𝑛𝑍 ↦ (𝐹𝑛)) ∈ dom ⇝𝑟 )
4811, 24rlimdm 14326 . . . . . 6 (𝜑 → ((𝑛𝑍 ↦ (𝐹𝑛)) ∈ dom ⇝𝑟 ↔ (𝑛𝑍 ↦ (𝐹𝑛)) ⇝𝑟 ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛)))))
4947, 48mpbid 222 . . . . 5 (𝜑 → (𝑛𝑍 ↦ (𝐹𝑛)) ⇝𝑟 ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛))))
502, 49syl5eqbr 4720 . . . 4 (𝜑 → (𝑘𝑍 ↦ (𝐹𝑘)) ⇝𝑟 ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛))))
51 eqid 2651 . . . . . 6 (𝑘𝑍 ↦ (𝐹𝑘)) = (𝑘𝑍 ↦ (𝐹𝑘))
529, 51fmptd 6425 . . . . 5 (𝜑 → (𝑘𝑍 ↦ (𝐹𝑘)):𝑍⟶ℂ)
533, 22, 52rlimclim 14321 . . . 4 (𝜑 → ((𝑘𝑍 ↦ (𝐹𝑘)) ⇝𝑟 ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛))) ↔ (𝑘𝑍 ↦ (𝐹𝑘)) ⇝ ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛)))))
5450, 53mpbid 222 . . 3 (𝜑 → (𝑘𝑍 ↦ (𝐹𝑘)) ⇝ ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛))))
55 caucvg.4 . . . 4 (𝜑𝐹𝑉)
563, 51climmpt 14346 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹 ⇝ ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛))) ↔ (𝑘𝑍 ↦ (𝐹𝑘)) ⇝ ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛)))))
5722, 55, 56syl2anc 694 . . 3 (𝜑 → (𝐹 ⇝ ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛))) ↔ (𝑘𝑍 ↦ (𝐹𝑘)) ⇝ ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛)))))
5854, 57mpbird 247 . 2 (𝜑𝐹 ⇝ ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛))))
59 climrel 14267 . . 3 Rel ⇝
6059releldmi 5394 . 2 (𝐹 ⇝ ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛))) → 𝐹 ∈ dom ⇝ )
6158, 60syl 17 1 (𝜑𝐹 ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  wss 3607  c0 3948   class class class wbr 4685  cmpt 4762  dom cdm 5143  cfv 5926  (class class class)co 6690  supcsup 8387  cc 9972  cr 9973  1c1 9975  +∞cpnf 10109  *cxr 10111   < clt 10112  cle 10113  cmin 10304  cz 11415  cuz 11725  +crp 11870  abscabs 14018  cli 14259  𝑟 crli 14260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-ico 12219  df-fl 12633  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264
This theorem is referenced by:  caucvgb  14454  cvgcmpce  14594  ulmcau  24194  dchrisumlem3  25225  rrncmslem  33761
  Copyright terms: Public domain W3C validator