MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cats1fvn Structured version   Visualization version   GIF version

Theorem cats1fvn 13812
Description: The last symbol of a concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.)
Hypotheses
Ref Expression
cats1cld.1 𝑇 = (𝑆 ++ ⟨“𝑋”⟩)
cats1cli.2 𝑆 ∈ Word V
cats1fvn.3 (♯‘𝑆) = 𝑀
Assertion
Ref Expression
cats1fvn (𝑋𝑉 → (𝑇𝑀) = 𝑋)

Proof of Theorem cats1fvn
StepHypRef Expression
1 cats1cld.1 . . . 4 𝑇 = (𝑆 ++ ⟨“𝑋”⟩)
2 cats1fvn.3 . . . . . 6 (♯‘𝑆) = 𝑀
32oveq2i 6804 . . . . 5 (0 + (♯‘𝑆)) = (0 + 𝑀)
4 cats1cli.2 . . . . . . . . 9 𝑆 ∈ Word V
5 lencl 13520 . . . . . . . . 9 (𝑆 ∈ Word V → (♯‘𝑆) ∈ ℕ0)
64, 5ax-mp 5 . . . . . . . 8 (♯‘𝑆) ∈ ℕ0
72, 6eqeltrri 2847 . . . . . . 7 𝑀 ∈ ℕ0
87nn0cni 11506 . . . . . 6 𝑀 ∈ ℂ
98addid2i 10426 . . . . 5 (0 + 𝑀) = 𝑀
103, 9eqtr2i 2794 . . . 4 𝑀 = (0 + (♯‘𝑆))
111, 10fveq12i 6337 . . 3 (𝑇𝑀) = ((𝑆 ++ ⟨“𝑋”⟩)‘(0 + (♯‘𝑆)))
12 s1cli 13585 . . . 4 ⟨“𝑋”⟩ ∈ Word V
13 s1len 13586 . . . . . 6 (♯‘⟨“𝑋”⟩) = 1
14 1nn 11233 . . . . . 6 1 ∈ ℕ
1513, 14eqeltri 2846 . . . . 5 (♯‘⟨“𝑋”⟩) ∈ ℕ
16 lbfzo0 12716 . . . . 5 (0 ∈ (0..^(♯‘⟨“𝑋”⟩)) ↔ (♯‘⟨“𝑋”⟩) ∈ ℕ)
1715, 16mpbir 221 . . . 4 0 ∈ (0..^(♯‘⟨“𝑋”⟩))
18 ccatval3 13561 . . . 4 ((𝑆 ∈ Word V ∧ ⟨“𝑋”⟩ ∈ Word V ∧ 0 ∈ (0..^(♯‘⟨“𝑋”⟩))) → ((𝑆 ++ ⟨“𝑋”⟩)‘(0 + (♯‘𝑆))) = (⟨“𝑋”⟩‘0))
194, 12, 17, 18mp3an 1572 . . 3 ((𝑆 ++ ⟨“𝑋”⟩)‘(0 + (♯‘𝑆))) = (⟨“𝑋”⟩‘0)
2011, 19eqtri 2793 . 2 (𝑇𝑀) = (⟨“𝑋”⟩‘0)
21 s1fv 13590 . 2 (𝑋𝑉 → (⟨“𝑋”⟩‘0) = 𝑋)
2220, 21syl5eq 2817 1 (𝑋𝑉 → (𝑇𝑀) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  Vcvv 3351  cfv 6031  (class class class)co 6793  0cc0 10138  1c1 10139   + caddc 10141  cn 11222  0cn0 11494  ..^cfzo 12673  chash 13321  Word cword 13487   ++ cconcat 13489  ⟨“cs1 13490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-n0 11495  df-z 11580  df-uz 11889  df-fz 12534  df-fzo 12674  df-hash 13322  df-word 13495  df-concat 13497  df-s1 13498
This theorem is referenced by:  s2fv1  13842  s3fv2  13847  s4fv3  13852
  Copyright terms: Public domain W3C validator