Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  catchomfval Structured version   Visualization version   GIF version

Theorem catchomfval 16870
 Description: Set of arrows of the category of categories (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
catcbas.c 𝐶 = (CatCat‘𝑈)
catcbas.b 𝐵 = (Base‘𝐶)
catcbas.u (𝜑𝑈𝑉)
catchomfval.h 𝐻 = (Hom ‘𝐶)
Assertion
Ref Expression
catchomfval (𝜑𝐻 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 Func 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝜑,𝑥,𝑦   𝑥,𝑈,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐻(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem catchomfval
Dummy variables 𝑣 𝑧 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catchomfval.h . . 3 𝐻 = (Hom ‘𝐶)
2 catcbas.c . . . . 5 𝐶 = (CatCat‘𝑈)
3 catcbas.u . . . . 5 (𝜑𝑈𝑉)
4 catcbas.b . . . . . 6 𝐵 = (Base‘𝐶)
52, 4, 3catcbas 16869 . . . . 5 (𝜑𝐵 = (𝑈 ∩ Cat))
6 eqidd 2725 . . . . 5 (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 Func 𝑦)) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 Func 𝑦)))
7 eqidd 2725 . . . . 5 (𝜑 → (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓))) = (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓))))
82, 3, 5, 6, 7catcval 16868 . . . 4 (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 Func 𝑦))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓)))⟩})
98fveq2d 6308 . . 3 (𝜑 → (Hom ‘𝐶) = (Hom ‘{⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 Func 𝑦))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓)))⟩}))
101, 9syl5eq 2770 . 2 (𝜑𝐻 = (Hom ‘{⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 Func 𝑦))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓)))⟩}))
11 fvex 6314 . . . . 5 (Base‘𝐶) ∈ V
124, 11eqeltri 2799 . . . 4 𝐵 ∈ V
1312, 12mpt2ex 7367 . . 3 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 Func 𝑦)) ∈ V
14 catstr 16739 . . . 4 {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 Func 𝑦))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓)))⟩} Struct ⟨1, 15⟩
15 homid 16198 . . . 4 Hom = Slot (Hom ‘ndx)
16 snsstp2 4456 . . . 4 {⟨(Hom ‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 Func 𝑦))⟩} ⊆ {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 Func 𝑦))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓)))⟩}
1714, 15, 16strfv 16030 . . 3 ((𝑥𝐵, 𝑦𝐵 ↦ (𝑥 Func 𝑦)) ∈ V → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 Func 𝑦)) = (Hom ‘{⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 Func 𝑦))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓)))⟩}))
1813, 17mp1i 13 . 2 (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 Func 𝑦)) = (Hom ‘{⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 Func 𝑦))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓)))⟩}))
1910, 18eqtr4d 2761 1 (𝜑𝐻 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 Func 𝑦)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1596   ∈ wcel 2103  Vcvv 3304  {ctp 4289  ⟨cop 4291   × cxp 5216  ‘cfv 6001  (class class class)co 6765   ↦ cmpt2 6767  2nd c2nd 7284  1c1 10050  5c5 11186  ;cdc 11606  ndxcnx 15977  Basecbs 15980  Hom chom 16075  compcco 16076   Func cfunc 16636   ∘func ccofu 16638  CatCatccatc 16866 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-oadd 7684  df-er 7862  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-nn 11134  df-2 11192  df-3 11193  df-4 11194  df-5 11195  df-6 11196  df-7 11197  df-8 11198  df-9 11199  df-n0 11406  df-z 11491  df-dec 11607  df-uz 11801  df-fz 12441  df-struct 15982  df-ndx 15983  df-slot 15984  df-base 15986  df-hom 16089  df-cco 16090  df-catc 16867 This theorem is referenced by:  catchom  16871  catccofval  16872
 Copyright terms: Public domain W3C validator