![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > catcco | Structured version Visualization version GIF version |
Description: Composition in the category of categories. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
catcbas.c | ⊢ 𝐶 = (CatCat‘𝑈) |
catcbas.b | ⊢ 𝐵 = (Base‘𝐶) |
catcbas.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
catcco.o | ⊢ · = (comp‘𝐶) |
catcco.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
catcco.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
catcco.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
catcco.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋 Func 𝑌)) |
catcco.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌 Func 𝑍)) |
Ref | Expression |
---|---|
catcco | ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘func 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | catcbas.c | . . . 4 ⊢ 𝐶 = (CatCat‘𝑈) | |
2 | catcbas.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
3 | catcbas.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
4 | catcco.o | . . . 4 ⊢ · = (comp‘𝐶) | |
5 | 1, 2, 3, 4 | catccofval 16951 | . . 3 ⊢ (𝜑 → · = (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔 ∘func 𝑓)))) |
6 | simprl 811 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → 𝑣 = 〈𝑋, 𝑌〉) | |
7 | 6 | fveq2d 6356 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘𝑣) = (2nd ‘〈𝑋, 𝑌〉)) |
8 | catcco.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
9 | catcco.y | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
10 | op2ndg 7346 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) | |
11 | 8, 9, 10 | syl2anc 696 | . . . . . . 7 ⊢ (𝜑 → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) |
12 | 11 | adantr 472 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) |
13 | 7, 12 | eqtrd 2794 | . . . . 5 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘𝑣) = 𝑌) |
14 | simprr 813 | . . . . 5 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → 𝑧 = 𝑍) | |
15 | 13, 14 | oveq12d 6831 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → ((2nd ‘𝑣) Func 𝑧) = (𝑌 Func 𝑍)) |
16 | 6 | fveq2d 6356 | . . . . 5 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → ( Func ‘𝑣) = ( Func ‘〈𝑋, 𝑌〉)) |
17 | df-ov 6816 | . . . . 5 ⊢ (𝑋 Func 𝑌) = ( Func ‘〈𝑋, 𝑌〉) | |
18 | 16, 17 | syl6eqr 2812 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → ( Func ‘𝑣) = (𝑋 Func 𝑌)) |
19 | eqidd 2761 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (𝑔 ∘func 𝑓) = (𝑔 ∘func 𝑓)) | |
20 | 15, 18, 19 | mpt2eq123dv 6882 | . . 3 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (𝑔 ∈ ((2nd ‘𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔 ∘func 𝑓)) = (𝑔 ∈ (𝑌 Func 𝑍), 𝑓 ∈ (𝑋 Func 𝑌) ↦ (𝑔 ∘func 𝑓))) |
21 | opelxpi 5305 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) | |
22 | 8, 9, 21 | syl2anc 696 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
23 | catcco.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
24 | ovex 6841 | . . . . 5 ⊢ (𝑌 Func 𝑍) ∈ V | |
25 | ovex 6841 | . . . . 5 ⊢ (𝑋 Func 𝑌) ∈ V | |
26 | 24, 25 | mpt2ex 7415 | . . . 4 ⊢ (𝑔 ∈ (𝑌 Func 𝑍), 𝑓 ∈ (𝑋 Func 𝑌) ↦ (𝑔 ∘func 𝑓)) ∈ V |
27 | 26 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑔 ∈ (𝑌 Func 𝑍), 𝑓 ∈ (𝑋 Func 𝑌) ↦ (𝑔 ∘func 𝑓)) ∈ V) |
28 | 5, 20, 22, 23, 27 | ovmpt2d 6953 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉 · 𝑍) = (𝑔 ∈ (𝑌 Func 𝑍), 𝑓 ∈ (𝑋 Func 𝑌) ↦ (𝑔 ∘func 𝑓))) |
29 | oveq12 6822 | . . 3 ⊢ ((𝑔 = 𝐺 ∧ 𝑓 = 𝐹) → (𝑔 ∘func 𝑓) = (𝐺 ∘func 𝐹)) | |
30 | 29 | adantl 473 | . 2 ⊢ ((𝜑 ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) → (𝑔 ∘func 𝑓) = (𝐺 ∘func 𝐹)) |
31 | catcco.g | . 2 ⊢ (𝜑 → 𝐺 ∈ (𝑌 Func 𝑍)) | |
32 | catcco.f | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑋 Func 𝑌)) | |
33 | ovexd 6843 | . 2 ⊢ (𝜑 → (𝐺 ∘func 𝐹) ∈ V) | |
34 | 28, 30, 31, 32, 33 | ovmpt2d 6953 | 1 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘func 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 Vcvv 3340 〈cop 4327 × cxp 5264 ‘cfv 6049 (class class class)co 6813 ↦ cmpt2 6815 2nd c2nd 7332 Basecbs 16059 compcco 16155 Func cfunc 16715 ∘func ccofu 16717 CatCatccatc 16945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-oadd 7733 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-7 11276 df-8 11277 df-9 11278 df-n0 11485 df-z 11570 df-dec 11686 df-uz 11880 df-fz 12520 df-struct 16061 df-ndx 16062 df-slot 16063 df-base 16065 df-hom 16168 df-cco 16169 df-catc 16946 |
This theorem is referenced by: catccatid 16953 resscatc 16956 catcisolem 16957 catciso 16958 |
Copyright terms: Public domain | W3C validator |