![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > carsgmon | Structured version Visualization version GIF version |
Description: Utility lemma: Apply monotony. (Contributed by Thierry Arnoux, 29-May-2020.) |
Ref | Expression |
---|---|
carsgval.1 | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
carsgval.2 | ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
carsgmon.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
carsgmon.2 | ⊢ (𝜑 → 𝐵 ∈ 𝒫 𝑂) |
carsgmon.3 | ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) → (𝑀‘𝑥) ≤ (𝑀‘𝑦)) |
Ref | Expression |
---|---|
carsgmon | ⊢ (𝜑 → (𝑀‘𝐴) ≤ (𝑀‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | carsgmon.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝒫 𝑂) | |
2 | carsgmon.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
3 | 1, 2 | ssexd 4957 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
4 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
5 | sseq1 3767 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝑦 ↔ 𝐴 ⊆ 𝑦)) | |
6 | 5 | 3anbi2d 1553 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝜑 ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) ↔ (𝜑 ∧ 𝐴 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂))) |
7 | fveq2 6352 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑀‘𝑥) = (𝑀‘𝐴)) | |
8 | 7 | breq1d 4814 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑀‘𝑥) ≤ (𝑀‘𝑦) ↔ (𝑀‘𝐴) ≤ (𝑀‘𝑦))) |
9 | 6, 8 | imbi12d 333 | . . . 4 ⊢ (𝑥 = 𝐴 → (((𝜑 ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) → (𝑀‘𝑥) ≤ (𝑀‘𝑦)) ↔ ((𝜑 ∧ 𝐴 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) → (𝑀‘𝐴) ≤ (𝑀‘𝑦)))) |
10 | sseq2 3768 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝐴 ⊆ 𝑦 ↔ 𝐴 ⊆ 𝐵)) | |
11 | eleq1 2827 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ 𝒫 𝑂 ↔ 𝐵 ∈ 𝒫 𝑂)) | |
12 | 10, 11 | 3anbi23d 1551 | . . . . 5 ⊢ (𝑦 = 𝐵 → ((𝜑 ∧ 𝐴 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) ↔ (𝜑 ∧ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝒫 𝑂))) |
13 | fveq2 6352 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝑀‘𝑦) = (𝑀‘𝐵)) | |
14 | 13 | breq2d 4816 | . . . . 5 ⊢ (𝑦 = 𝐵 → ((𝑀‘𝐴) ≤ (𝑀‘𝑦) ↔ (𝑀‘𝐴) ≤ (𝑀‘𝐵))) |
15 | 12, 14 | imbi12d 333 | . . . 4 ⊢ (𝑦 = 𝐵 → (((𝜑 ∧ 𝐴 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) → (𝑀‘𝐴) ≤ (𝑀‘𝑦)) ↔ ((𝜑 ∧ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝒫 𝑂) → (𝑀‘𝐴) ≤ (𝑀‘𝐵)))) |
16 | carsgmon.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) → (𝑀‘𝑥) ≤ (𝑀‘𝑦)) | |
17 | 9, 15, 16 | vtocl2g 3410 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝒫 𝑂) → ((𝜑 ∧ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝒫 𝑂) → (𝑀‘𝐴) ≤ (𝑀‘𝐵))) |
18 | 17 | imp 444 | . 2 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ 𝒫 𝑂) ∧ (𝜑 ∧ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝒫 𝑂)) → (𝑀‘𝐴) ≤ (𝑀‘𝐵)) |
19 | 3, 1, 4, 2, 1, 18 | syl23anc 1484 | 1 ⊢ (𝜑 → (𝑀‘𝐴) ≤ (𝑀‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 Vcvv 3340 ⊆ wss 3715 𝒫 cpw 4302 class class class wbr 4804 ⟶wf 6045 ‘cfv 6049 (class class class)co 6813 0cc0 10128 +∞cpnf 10263 ≤ cle 10267 [,]cicc 12371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-iota 6012 df-fv 6057 |
This theorem is referenced by: carsggect 30689 carsgclctunlem2 30690 |
Copyright terms: Public domain | W3C validator |