Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carsgclctun Structured version   Visualization version   GIF version

Theorem carsgclctun 30684
Description: The Caratheodory measurable sets are closed under countable union. (Contributed by Thierry Arnoux, 21-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
carsgsiga.1 (𝜑 → (𝑀‘∅) = 0)
carsgsiga.2 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
carsgsiga.3 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
carsgclctun.1 (𝜑𝐴 ≼ ω)
carsgclctun.2 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
Assertion
Ref Expression
carsgclctun (𝜑 𝐴 ∈ (toCaraSiga‘𝑀))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑀,𝑦   𝑥,𝑂,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem carsgclctun
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 carsgclctun.2 . . . 4 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
2 uniss 4602 . . . 4 (𝐴 ⊆ (toCaraSiga‘𝑀) → 𝐴 (toCaraSiga‘𝑀))
31, 2syl 17 . . 3 (𝜑 𝐴 (toCaraSiga‘𝑀))
4 carsgval.1 . . . 4 (𝜑𝑂𝑉)
5 carsgval.2 . . . 4 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
6 carsgsiga.1 . . . 4 (𝜑 → (𝑀‘∅) = 0)
74, 5, 6carsguni 30671 . . 3 (𝜑 (toCaraSiga‘𝑀) = 𝑂)
83, 7sseqtrd 3774 . 2 (𝜑 𝐴𝑂)
94adantr 472 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝑂𝑉)
105adantr 472 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
116adantr 472 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘∅) = 0)
12 carsgsiga.2 . . . . . . 7 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
13123adant1r 1185 . . . . . 6 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
14 carsgsiga.3 . . . . . . 7 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
15143adant1r 1185 . . . . . 6 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
16 carsgclctun.1 . . . . . . 7 (𝜑𝐴 ≼ ω)
1716adantr 472 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝐴 ≼ ω)
181adantr 472 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝐴 ⊆ (toCaraSiga‘𝑀))
19 simpr 479 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝑒 ∈ 𝒫 𝑂)
209, 10, 11, 13, 15, 17, 18, 19carsgclctunlem3 30683 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) ≤ (𝑀𝑒))
21 inex1g 4945 . . . . . . . . 9 (𝑒 ∈ 𝒫 𝑂 → (𝑒 𝐴) ∈ V)
2221adantl 473 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒 𝐴) ∈ V)
23 difexg 4952 . . . . . . . . 9 (𝑒 ∈ 𝒫 𝑂 → (𝑒 𝐴) ∈ V)
2423adantl 473 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒 𝐴) ∈ V)
25 prct 29793 . . . . . . . 8 (((𝑒 𝐴) ∈ V ∧ (𝑒 𝐴) ∈ V) → {(𝑒 𝐴), (𝑒 𝐴)} ≼ ω)
2622, 24, 25syl2anc 696 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → {(𝑒 𝐴), (𝑒 𝐴)} ≼ ω)
2719elpwincl1 29656 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒 𝐴) ∈ 𝒫 𝑂)
2819elpwdifcl 29657 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒 𝐴) ∈ 𝒫 𝑂)
29 prssi 4490 . . . . . . . 8 (((𝑒 𝐴) ∈ 𝒫 𝑂 ∧ (𝑒 𝐴) ∈ 𝒫 𝑂) → {(𝑒 𝐴), (𝑒 𝐴)} ⊆ 𝒫 𝑂)
3027, 28, 29syl2anc 696 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → {(𝑒 𝐴), (𝑒 𝐴)} ⊆ 𝒫 𝑂)
31 prex 5050 . . . . . . . . 9 {(𝑒 𝐴), (𝑒 𝐴)} ∈ V
32 breq1 4799 . . . . . . . . . . . 12 (𝑥 = {(𝑒 𝐴), (𝑒 𝐴)} → (𝑥 ≼ ω ↔ {(𝑒 𝐴), (𝑒 𝐴)} ≼ ω))
33 sseq1 3759 . . . . . . . . . . . 12 (𝑥 = {(𝑒 𝐴), (𝑒 𝐴)} → (𝑥 ⊆ 𝒫 𝑂 ↔ {(𝑒 𝐴), (𝑒 𝐴)} ⊆ 𝒫 𝑂))
3432, 333anbi23d 1543 . . . . . . . . . . 11 (𝑥 = {(𝑒 𝐴), (𝑒 𝐴)} → ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) ↔ (𝜑 ∧ {(𝑒 𝐴), (𝑒 𝐴)} ≼ ω ∧ {(𝑒 𝐴), (𝑒 𝐴)} ⊆ 𝒫 𝑂)))
35 unieq 4588 . . . . . . . . . . . . 13 (𝑥 = {(𝑒 𝐴), (𝑒 𝐴)} → 𝑥 = {(𝑒 𝐴), (𝑒 𝐴)})
3635fveq2d 6348 . . . . . . . . . . . 12 (𝑥 = {(𝑒 𝐴), (𝑒 𝐴)} → (𝑀 𝑥) = (𝑀 {(𝑒 𝐴), (𝑒 𝐴)}))
37 esumeq1 30397 . . . . . . . . . . . 12 (𝑥 = {(𝑒 𝐴), (𝑒 𝐴)} → Σ*𝑦𝑥(𝑀𝑦) = Σ*𝑦 ∈ {(𝑒 𝐴), (𝑒 𝐴)} (𝑀𝑦))
3836, 37breq12d 4809 . . . . . . . . . . 11 (𝑥 = {(𝑒 𝐴), (𝑒 𝐴)} → ((𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦) ↔ (𝑀 {(𝑒 𝐴), (𝑒 𝐴)}) ≤ Σ*𝑦 ∈ {(𝑒 𝐴), (𝑒 𝐴)} (𝑀𝑦)))
3934, 38imbi12d 333 . . . . . . . . . 10 (𝑥 = {(𝑒 𝐴), (𝑒 𝐴)} → (((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦)) ↔ ((𝜑 ∧ {(𝑒 𝐴), (𝑒 𝐴)} ≼ ω ∧ {(𝑒 𝐴), (𝑒 𝐴)} ⊆ 𝒫 𝑂) → (𝑀 {(𝑒 𝐴), (𝑒 𝐴)}) ≤ Σ*𝑦 ∈ {(𝑒 𝐴), (𝑒 𝐴)} (𝑀𝑦))))
4039, 12vtoclg 3398 . . . . . . . . 9 ({(𝑒 𝐴), (𝑒 𝐴)} ∈ V → ((𝜑 ∧ {(𝑒 𝐴), (𝑒 𝐴)} ≼ ω ∧ {(𝑒 𝐴), (𝑒 𝐴)} ⊆ 𝒫 𝑂) → (𝑀 {(𝑒 𝐴), (𝑒 𝐴)}) ≤ Σ*𝑦 ∈ {(𝑒 𝐴), (𝑒 𝐴)} (𝑀𝑦)))
4131, 40ax-mp 5 . . . . . . . 8 ((𝜑 ∧ {(𝑒 𝐴), (𝑒 𝐴)} ≼ ω ∧ {(𝑒 𝐴), (𝑒 𝐴)} ⊆ 𝒫 𝑂) → (𝑀 {(𝑒 𝐴), (𝑒 𝐴)}) ≤ Σ*𝑦 ∈ {(𝑒 𝐴), (𝑒 𝐴)} (𝑀𝑦))
42413adant1r 1185 . . . . . . 7 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ {(𝑒 𝐴), (𝑒 𝐴)} ≼ ω ∧ {(𝑒 𝐴), (𝑒 𝐴)} ⊆ 𝒫 𝑂) → (𝑀 {(𝑒 𝐴), (𝑒 𝐴)}) ≤ Σ*𝑦 ∈ {(𝑒 𝐴), (𝑒 𝐴)} (𝑀𝑦))
4326, 30, 42mpd3an23 1567 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀 {(𝑒 𝐴), (𝑒 𝐴)}) ≤ Σ*𝑦 ∈ {(𝑒 𝐴), (𝑒 𝐴)} (𝑀𝑦))
44 uniprg 4594 . . . . . . . . 9 (((𝑒 𝐴) ∈ 𝒫 𝑂 ∧ (𝑒 𝐴) ∈ 𝒫 𝑂) → {(𝑒 𝐴), (𝑒 𝐴)} = ((𝑒 𝐴) ∪ (𝑒 𝐴)))
4527, 28, 44syl2anc 696 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → {(𝑒 𝐴), (𝑒 𝐴)} = ((𝑒 𝐴) ∪ (𝑒 𝐴)))
46 inundif 4182 . . . . . . . 8 ((𝑒 𝐴) ∪ (𝑒 𝐴)) = 𝑒
4745, 46syl6eq 2802 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → {(𝑒 𝐴), (𝑒 𝐴)} = 𝑒)
4847fveq2d 6348 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀 {(𝑒 𝐴), (𝑒 𝐴)}) = (𝑀𝑒))
49 simpr 479 . . . . . . . 8 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ 𝑦 = (𝑒 𝐴)) → 𝑦 = (𝑒 𝐴))
5049fveq2d 6348 . . . . . . 7 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ 𝑦 = (𝑒 𝐴)) → (𝑀𝑦) = (𝑀‘(𝑒 𝐴)))
51 simpr 479 . . . . . . . 8 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ 𝑦 = (𝑒 𝐴)) → 𝑦 = (𝑒 𝐴))
5251fveq2d 6348 . . . . . . 7 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ 𝑦 = (𝑒 𝐴)) → (𝑀𝑦) = (𝑀‘(𝑒 𝐴)))
5310, 27ffvelrnd 6515 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 𝐴)) ∈ (0[,]+∞))
5410, 28ffvelrnd 6515 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 𝐴)) ∈ (0[,]+∞))
55 ineq2 3943 . . . . . . . . . . . . 13 ((𝑒 𝐴) = (𝑒 𝐴) → ((𝑒 𝐴) ∩ (𝑒 𝐴)) = ((𝑒 𝐴) ∩ (𝑒 𝐴)))
56 inidm 3957 . . . . . . . . . . . . 13 ((𝑒 𝐴) ∩ (𝑒 𝐴)) = (𝑒 𝐴)
57 inindif 29652 . . . . . . . . . . . . 13 ((𝑒 𝐴) ∩ (𝑒 𝐴)) = ∅
5855, 56, 573eqtr3g 2809 . . . . . . . . . . . 12 ((𝑒 𝐴) = (𝑒 𝐴) → (𝑒 𝐴) = ∅)
5958adantl 473 . . . . . . . . . . 11 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ (𝑒 𝐴) = (𝑒 𝐴)) → (𝑒 𝐴) = ∅)
6059fveq2d 6348 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ (𝑒 𝐴) = (𝑒 𝐴)) → (𝑀‘(𝑒 𝐴)) = (𝑀‘∅))
616ad2antrr 764 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ (𝑒 𝐴) = (𝑒 𝐴)) → (𝑀‘∅) = 0)
6260, 61eqtrd 2786 . . . . . . . . 9 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ (𝑒 𝐴) = (𝑒 𝐴)) → (𝑀‘(𝑒 𝐴)) = 0)
6362orcd 406 . . . . . . . 8 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ (𝑒 𝐴) = (𝑒 𝐴)) → ((𝑀‘(𝑒 𝐴)) = 0 ∨ (𝑀‘(𝑒 𝐴)) = +∞))
6463ex 449 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑒 𝐴) = (𝑒 𝐴) → ((𝑀‘(𝑒 𝐴)) = 0 ∨ (𝑀‘(𝑒 𝐴)) = +∞)))
6550, 52, 27, 28, 53, 54, 64esumpr2 30430 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → Σ*𝑦 ∈ {(𝑒 𝐴), (𝑒 𝐴)} (𝑀𝑦) = ((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))))
6643, 48, 653brtr3d 4827 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀𝑒) ≤ ((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))))
6720, 66jca 555 . . . 4 ((𝜑𝑒 ∈ 𝒫 𝑂) → (((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) ≤ (𝑀𝑒) ∧ (𝑀𝑒) ≤ ((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴)))))
68 iccssxr 12441 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
6968, 53sseldi 3734 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 𝐴)) ∈ ℝ*)
7068, 54sseldi 3734 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 𝐴)) ∈ ℝ*)
7169, 70xaddcld 12316 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) ∈ ℝ*)
725ffvelrnda 6514 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀𝑒) ∈ (0[,]+∞))
7368, 72sseldi 3734 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀𝑒) ∈ ℝ*)
74 xrletri3 12170 . . . . 5 ((((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) ∈ ℝ* ∧ (𝑀𝑒) ∈ ℝ*) → (((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) = (𝑀𝑒) ↔ (((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) ≤ (𝑀𝑒) ∧ (𝑀𝑒) ≤ ((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))))))
7571, 73, 74syl2anc 696 . . . 4 ((𝜑𝑒 ∈ 𝒫 𝑂) → (((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) = (𝑀𝑒) ↔ (((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) ≤ (𝑀𝑒) ∧ (𝑀𝑒) ≤ ((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))))))
7667, 75mpbird 247 . . 3 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) = (𝑀𝑒))
7776ralrimiva 3096 . 2 (𝜑 → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) = (𝑀𝑒))
784, 5elcarsg 30668 . 2 (𝜑 → ( 𝐴 ∈ (toCaraSiga‘𝑀) ↔ ( 𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) = (𝑀𝑒))))
798, 77, 78mpbir2and 995 1 (𝜑 𝐴 ∈ (toCaraSiga‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383  w3a 1072   = wceq 1624  wcel 2131  wral 3042  Vcvv 3332  cdif 3704  cun 3705  cin 3706  wss 3707  c0 4050  𝒫 cpw 4294  {cpr 4315   cuni 4580   class class class wbr 4796  wf 6037  cfv 6041  (class class class)co 6805  ωcom 7222  cdom 8111  0cc0 10120  +∞cpnf 10255  *cxr 10257  cle 10259   +𝑒 cxad 12129  [,]cicc 12363  Σ*cesum 30390  toCaraSigaccarsg 30664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703  ax-ac2 9469  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198  ax-addf 10199  ax-mulf 10200
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-fal 1630  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-iin 4667  df-disj 4765  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-se 5218  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-isom 6050  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-of 7054  df-om 7223  df-1st 7325  df-2nd 7326  df-supp 7456  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-2o 7722  df-oadd 7725  df-er 7903  df-map 8017  df-pm 8018  df-ixp 8067  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8433  df-fi 8474  df-sup 8505  df-inf 8506  df-oi 8572  df-card 8947  df-acn 8950  df-ac 9121  df-cda 9174  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-2 11263  df-3 11264  df-4 11265  df-5 11266  df-6 11267  df-7 11268  df-8 11269  df-9 11270  df-n0 11477  df-z 11562  df-dec 11678  df-uz 11872  df-q 11974  df-rp 12018  df-xneg 12131  df-xadd 12132  df-xmul 12133  df-ioo 12364  df-ioc 12365  df-ico 12366  df-icc 12367  df-fz 12512  df-fzo 12652  df-fl 12779  df-mod 12855  df-seq 12988  df-exp 13047  df-fac 13247  df-bc 13276  df-hash 13304  df-shft 13998  df-cj 14030  df-re 14031  df-im 14032  df-sqrt 14166  df-abs 14167  df-limsup 14393  df-clim 14410  df-rlim 14411  df-sum 14608  df-ef 14989  df-sin 14991  df-cos 14992  df-pi 14994  df-struct 16053  df-ndx 16054  df-slot 16055  df-base 16057  df-sets 16058  df-ress 16059  df-plusg 16148  df-mulr 16149  df-starv 16150  df-sca 16151  df-vsca 16152  df-ip 16153  df-tset 16154  df-ple 16155  df-ds 16158  df-unif 16159  df-hom 16160  df-cco 16161  df-rest 16277  df-topn 16278  df-0g 16296  df-gsum 16297  df-topgen 16298  df-pt 16299  df-prds 16302  df-ordt 16355  df-xrs 16356  df-qtop 16361  df-imas 16362  df-xps 16364  df-mre 16440  df-mrc 16441  df-acs 16443  df-ps 17393  df-tsr 17394  df-plusf 17434  df-mgm 17435  df-sgrp 17477  df-mnd 17488  df-mhm 17528  df-submnd 17529  df-grp 17618  df-minusg 17619  df-sbg 17620  df-mulg 17734  df-subg 17784  df-cntz 17942  df-cmn 18387  df-abl 18388  df-mgp 18682  df-ur 18694  df-ring 18741  df-cring 18742  df-subrg 18972  df-abv 19011  df-lmod 19059  df-scaf 19060  df-sra 19366  df-rgmod 19367  df-psmet 19932  df-xmet 19933  df-met 19934  df-bl 19935  df-mopn 19936  df-fbas 19937  df-fg 19938  df-cnfld 19941  df-top 20893  df-topon 20910  df-topsp 20931  df-bases 20944  df-cld 21017  df-ntr 21018  df-cls 21019  df-nei 21096  df-lp 21134  df-perf 21135  df-cn 21225  df-cnp 21226  df-haus 21313  df-tx 21559  df-hmeo 21752  df-fil 21843  df-fm 21935  df-flim 21936  df-flf 21937  df-tmd 22069  df-tgp 22070  df-tsms 22123  df-trg 22156  df-xms 22318  df-ms 22319  df-tms 22320  df-nm 22580  df-ngp 22581  df-nrg 22583  df-nlm 22584  df-ii 22873  df-cncf 22874  df-limc 23821  df-dv 23822  df-log 24494  df-esum 30391  df-carsg 30665
This theorem is referenced by:  carsgsiga  30685  omsmeas  30686
  Copyright terms: Public domain W3C validator