![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cardsdomelir | Structured version Visualization version GIF version |
Description: A cardinal strictly dominates its members. Equivalent to Proposition 10.37 of [TakeutiZaring] p. 93. This is half of the assertion cardsdomel 9004 and can be proven without the AC. (Contributed by Mario Carneiro, 15-Jan-2013.) |
Ref | Expression |
---|---|
cardsdomelir | ⊢ (𝐴 ∈ (card‘𝐵) → 𝐴 ≺ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardon 8974 | . . . 4 ⊢ (card‘𝐵) ∈ On | |
2 | 1 | onelssi 5978 | . . . 4 ⊢ (𝐴 ∈ (card‘𝐵) → 𝐴 ⊆ (card‘𝐵)) |
3 | ssdomg 8159 | . . . 4 ⊢ ((card‘𝐵) ∈ On → (𝐴 ⊆ (card‘𝐵) → 𝐴 ≼ (card‘𝐵))) | |
4 | 1, 2, 3 | mpsyl 68 | . . 3 ⊢ (𝐴 ∈ (card‘𝐵) → 𝐴 ≼ (card‘𝐵)) |
5 | elfvdm 6363 | . . . 4 ⊢ (𝐴 ∈ (card‘𝐵) → 𝐵 ∈ dom card) | |
6 | cardid2 8983 | . . . 4 ⊢ (𝐵 ∈ dom card → (card‘𝐵) ≈ 𝐵) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝐴 ∈ (card‘𝐵) → (card‘𝐵) ≈ 𝐵) |
8 | domentr 8172 | . . 3 ⊢ ((𝐴 ≼ (card‘𝐵) ∧ (card‘𝐵) ≈ 𝐵) → 𝐴 ≼ 𝐵) | |
9 | 4, 7, 8 | syl2anc 573 | . 2 ⊢ (𝐴 ∈ (card‘𝐵) → 𝐴 ≼ 𝐵) |
10 | cardne 8995 | . 2 ⊢ (𝐴 ∈ (card‘𝐵) → ¬ 𝐴 ≈ 𝐵) | |
11 | brsdom 8136 | . 2 ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) | |
12 | 9, 10, 11 | sylanbrc 572 | 1 ⊢ (𝐴 ∈ (card‘𝐵) → 𝐴 ≺ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2145 ⊆ wss 3723 class class class wbr 4787 dom cdm 5250 Oncon0 5865 ‘cfv 6030 ≈ cen 8110 ≼ cdom 8111 ≺ csdm 8112 cardccrd 8965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-ord 5868 df-on 5869 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-en 8114 df-dom 8115 df-sdom 8116 df-card 8969 |
This theorem is referenced by: cardsdomel 9004 pwsdompw 9232 alephval2 9600 pwcfsdom 9611 tskcard 9809 |
Copyright terms: Public domain | W3C validator |