![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cardon | Structured version Visualization version GIF version |
Description: The cardinal number of a set is an ordinal number. Proposition 10.6(1) of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.) (Revised by Mario Carneiro, 13-Sep-2013.) |
Ref | Expression |
---|---|
cardon | ⊢ (card‘𝐴) ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardf2 8959 | . 2 ⊢ card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦 ≈ 𝑥}⟶On | |
2 | 0elon 5939 | . 2 ⊢ ∅ ∈ On | |
3 | 1, 2 | f0cli 6533 | 1 ⊢ (card‘𝐴) ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2139 {cab 2746 ∃wrex 3051 class class class wbr 4804 Oncon0 5884 ‘cfv 6049 ≈ cen 8118 cardccrd 8951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-ord 5887 df-on 5888 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fv 6057 df-card 8955 |
This theorem is referenced by: isnum3 8970 cardidm 8975 ficardom 8977 cardne 8981 carden2b 8983 cardlim 8988 cardsdomelir 8989 cardsdomel 8990 iscard 8991 iscard2 8992 carddom2 8993 carduni 8997 cardom 9002 cardsdom2 9004 domtri2 9005 cardval2 9007 infxpidm2 9030 dfac8b 9044 numdom 9051 indcardi 9054 alephnbtwn 9084 alephnbtwn2 9085 alephsucdom 9092 cardaleph 9102 iscard3 9106 alephinit 9108 alephsson 9113 alephval3 9123 dfac12r 9160 dfac12k 9161 cardacda 9212 cdanum 9213 pwsdompw 9218 cff 9262 cardcf 9266 cfon 9269 cfeq0 9270 cfsuc 9271 cff1 9272 cfflb 9273 cflim2 9277 cfss 9279 fin1a2lem9 9422 ttukeylem6 9528 ttukeylem7 9529 unsnen 9567 inar1 9789 tskcard 9795 tskuni 9797 gruina 9832 |
Copyright terms: Public domain | W3C validator |