![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cardmin | Structured version Visualization version GIF version |
Description: The smallest ordinal that strictly dominates a set is a cardinal. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 20-Sep-2014.) |
Ref | Expression |
---|---|
cardmin | ⊢ (𝐴 ∈ 𝑉 → (card‘∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) = ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numthcor 9518 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 ∈ On 𝐴 ≺ 𝑥) | |
2 | onintrab2 7149 | . . 3 ⊢ (∃𝑥 ∈ On 𝐴 ≺ 𝑥 ↔ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ∈ On) | |
3 | 1, 2 | sylib 208 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ∈ On) |
4 | onelon 5891 | . . . . . . . . 9 ⊢ ((∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ∈ On ∧ 𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) → 𝑦 ∈ On) | |
5 | 4 | ex 397 | . . . . . . . 8 ⊢ (∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ∈ On → (𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → 𝑦 ∈ On)) |
6 | 3, 5 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → 𝑦 ∈ On)) |
7 | breq2 4790 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝐴 ≺ 𝑥 ↔ 𝐴 ≺ 𝑦)) | |
8 | 7 | onnminsb 7151 | . . . . . . 7 ⊢ (𝑦 ∈ On → (𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → ¬ 𝐴 ≺ 𝑦)) |
9 | 6, 8 | syli 39 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → ¬ 𝐴 ≺ 𝑦)) |
10 | vex 3354 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
11 | domtri 9580 | . . . . . . 7 ⊢ ((𝑦 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝑦 ≼ 𝐴 ↔ ¬ 𝐴 ≺ 𝑦)) | |
12 | 10, 11 | mpan 670 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ≼ 𝐴 ↔ ¬ 𝐴 ≺ 𝑦)) |
13 | 9, 12 | sylibrd 249 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → 𝑦 ≼ 𝐴)) |
14 | nfcv 2913 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐴 | |
15 | nfcv 2913 | . . . . . . . 8 ⊢ Ⅎ𝑥 ≺ | |
16 | nfrab1 3271 | . . . . . . . . 9 ⊢ Ⅎ𝑥{𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} | |
17 | 16 | nfint 4621 | . . . . . . . 8 ⊢ Ⅎ𝑥∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} |
18 | 14, 15, 17 | nfbr 4833 | . . . . . . 7 ⊢ Ⅎ𝑥 𝐴 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} |
19 | breq2 4790 | . . . . . . 7 ⊢ (𝑥 = ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → (𝐴 ≺ 𝑥 ↔ 𝐴 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥})) | |
20 | 18, 19 | onminsb 7146 | . . . . . 6 ⊢ (∃𝑥 ∈ On 𝐴 ≺ 𝑥 → 𝐴 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
21 | 1, 20 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
22 | 13, 21 | jctird 516 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → (𝑦 ≼ 𝐴 ∧ 𝐴 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}))) |
23 | domsdomtr 8251 | . . . 4 ⊢ ((𝑦 ≼ 𝐴 ∧ 𝐴 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) → 𝑦 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) | |
24 | 22, 23 | syl6 35 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} → 𝑦 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥})) |
25 | 24 | ralrimiv 3114 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∀𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}𝑦 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
26 | iscard 9001 | . 2 ⊢ ((card‘∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) = ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ↔ (∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥} ∈ On ∧ ∀𝑦 ∈ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}𝑦 ≺ ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥})) | |
27 | 3, 25, 26 | sylanbrc 572 | 1 ⊢ (𝐴 ∈ 𝑉 → (card‘∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) = ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∀wral 3061 ∃wrex 3062 {crab 3065 Vcvv 3351 ∩ cint 4611 class class class wbr 4786 Oncon0 5866 ‘cfv 6031 ≼ cdom 8107 ≺ csdm 8108 cardccrd 8961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-ac2 9487 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6754 df-wrecs 7559 df-recs 7621 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-card 8965 df-ac 9139 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |