![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cardid2 | Structured version Visualization version GIF version |
Description: Any numerable set is equinumerous to its cardinal number. Proposition 10.5 of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.) |
Ref | Expression |
---|---|
cardid2 | ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardval3 8816 | . . 3 ⊢ (𝐴 ∈ dom card → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) | |
2 | ssrab2 3720 | . . . 4 ⊢ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ⊆ On | |
3 | fvex 6239 | . . . . . 6 ⊢ (card‘𝐴) ∈ V | |
4 | 1, 3 | syl6eqelr 2739 | . . . . 5 ⊢ (𝐴 ∈ dom card → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ∈ V) |
5 | intex 4850 | . . . . 5 ⊢ ({𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ≠ ∅ ↔ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ∈ V) | |
6 | 4, 5 | sylibr 224 | . . . 4 ⊢ (𝐴 ∈ dom card → {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ≠ ∅) |
7 | onint 7037 | . . . 4 ⊢ (({𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ⊆ On ∧ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ≠ ∅) → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) | |
8 | 2, 6, 7 | sylancr 696 | . . 3 ⊢ (𝐴 ∈ dom card → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
9 | 1, 8 | eqeltrd 2730 | . 2 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
10 | breq1 4688 | . . . 4 ⊢ (𝑦 = (card‘𝐴) → (𝑦 ≈ 𝐴 ↔ (card‘𝐴) ≈ 𝐴)) | |
11 | 10 | elrab 3396 | . . 3 ⊢ ((card‘𝐴) ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ↔ ((card‘𝐴) ∈ On ∧ (card‘𝐴) ≈ 𝐴)) |
12 | 11 | simprbi 479 | . 2 ⊢ ((card‘𝐴) ∈ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} → (card‘𝐴) ≈ 𝐴) |
13 | 9, 12 | syl 17 | 1 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2030 ≠ wne 2823 {crab 2945 Vcvv 3231 ⊆ wss 3607 ∅c0 3948 ∩ cint 4507 class class class wbr 4685 dom cdm 5143 Oncon0 5761 ‘cfv 5926 ≈ cen 7994 cardccrd 8799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-ord 5764 df-on 5765 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-fv 5934 df-en 7998 df-card 8803 |
This theorem is referenced by: isnum3 8818 oncardid 8820 cardidm 8823 ficardom 8825 ficardid 8826 cardnn 8827 cardnueq0 8828 carden2a 8830 carden2b 8831 carddomi2 8834 sdomsdomcardi 8835 cardsdomelir 8837 cardsdomel 8838 infxpidm2 8878 dfac8b 8892 numdom 8899 alephnbtwn2 8933 alephsucdom 8940 infenaleph 8952 dfac12r 9006 cardacda 9058 pwsdompw 9064 cff1 9118 cfflb 9119 cflim2 9123 cfss 9125 cfslb 9126 domtriomlem 9302 cardid 9407 cardidg 9408 carden 9411 sdomsdomcard 9420 hargch 9533 gch2 9535 hashkf 13159 |
Copyright terms: Public domain | W3C validator |