![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > carddom2 | Structured version Visualization version GIF version |
Description: Two numerable sets have the dominance relationship iff their cardinalities have the subset relationship. See also carddom 9414, which uses AC. (Contributed by Mario Carneiro, 11-Jan-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
carddom2 | ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ 𝐴 ≼ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | carddomi2 8834 | . 2 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝐵) → 𝐴 ≼ 𝐵)) | |
2 | brdom2 8027 | . . 3 ⊢ (𝐴 ≼ 𝐵 ↔ (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵)) | |
3 | cardon 8808 | . . . . . . . 8 ⊢ (card‘𝐴) ∈ On | |
4 | 3 | onelssi 5874 | . . . . . . 7 ⊢ ((card‘𝐵) ∈ (card‘𝐴) → (card‘𝐵) ⊆ (card‘𝐴)) |
5 | carddomi2 8834 | . . . . . . . 8 ⊢ ((𝐵 ∈ dom card ∧ 𝐴 ∈ dom card) → ((card‘𝐵) ⊆ (card‘𝐴) → 𝐵 ≼ 𝐴)) | |
6 | 5 | ancoms 468 | . . . . . . 7 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐵) ⊆ (card‘𝐴) → 𝐵 ≼ 𝐴)) |
7 | domnsym 8127 | . . . . . . 7 ⊢ (𝐵 ≼ 𝐴 → ¬ 𝐴 ≺ 𝐵) | |
8 | 4, 6, 7 | syl56 36 | . . . . . 6 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐵) ∈ (card‘𝐴) → ¬ 𝐴 ≺ 𝐵)) |
9 | 8 | con2d 129 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ≺ 𝐵 → ¬ (card‘𝐵) ∈ (card‘𝐴))) |
10 | cardon 8808 | . . . . . 6 ⊢ (card‘𝐵) ∈ On | |
11 | ontri1 5795 | . . . . . 6 ⊢ (((card‘𝐴) ∈ On ∧ (card‘𝐵) ∈ On) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ ¬ (card‘𝐵) ∈ (card‘𝐴))) | |
12 | 3, 10, 11 | mp2an 708 | . . . . 5 ⊢ ((card‘𝐴) ⊆ (card‘𝐵) ↔ ¬ (card‘𝐵) ∈ (card‘𝐴)) |
13 | 9, 12 | syl6ibr 242 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ≺ 𝐵 → (card‘𝐴) ⊆ (card‘𝐵))) |
14 | carden2b 8831 | . . . . . 6 ⊢ (𝐴 ≈ 𝐵 → (card‘𝐴) = (card‘𝐵)) | |
15 | eqimss 3690 | . . . . . 6 ⊢ ((card‘𝐴) = (card‘𝐵) → (card‘𝐴) ⊆ (card‘𝐵)) | |
16 | 14, 15 | syl 17 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 → (card‘𝐴) ⊆ (card‘𝐵)) |
17 | 16 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ≈ 𝐵 → (card‘𝐴) ⊆ (card‘𝐵))) |
18 | 13, 17 | jaod 394 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵) → (card‘𝐴) ⊆ (card‘𝐵))) |
19 | 2, 18 | syl5bi 232 | . 2 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ≼ 𝐵 → (card‘𝐴) ⊆ (card‘𝐵))) |
20 | 1, 19 | impbid 202 | 1 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ 𝐴 ≼ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 382 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ⊆ wss 3607 class class class wbr 4685 dom cdm 5143 Oncon0 5761 ‘cfv 5926 ≈ cen 7994 ≼ cdom 7995 ≺ csdm 7996 cardccrd 8799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-ord 5764 df-on 5765 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-card 8803 |
This theorem is referenced by: carduni 8845 carden2 8851 cardsdom2 8852 domtri2 8853 infxpidm2 8878 cardaleph 8950 infenaleph 8952 alephinit 8956 ficardun2 9063 ackbij2 9103 cfflb 9119 fin1a2lem9 9268 carddom 9414 pwfseqlem5 9523 hashdom 13206 |
Copyright terms: Public domain | W3C validator |